[スポンサーリンク]

化学者のつぶやき

ピリジン同士のラジカル-ラジカルカップリング

[スポンサーリンク]

電子移動試薬としてB2pin2を用いたピリジルホスホニウム塩とシアノピリジンのクロスカップリング反応が開発された。ラジカルラジカルカップリングで位置選択的に2,4ビピリジンが生成する。

カップリング法によるビピリジン合成

ビピリジン骨格は多くの医薬品にある重要な骨格であり(1)、その効率的な合成法が強く望まれている。ビピリジンは金属触媒を用いたクロスカップリングで合成できるが、ハロゲン化物、ピリジン金属化合物などの原料合成に多工程を要するという課題があった(図1A)(2)。一方、ピリジンの直接官能基化反応として、Minisci反応に代表されるラジカル付加反応が近年注目を集めている(3)。この反応は酸などで活性化されたピリジン類(ピリジニウム塩)に対し、炭素ラジカルを付加することでピリジンの直接官能基を実現している(図1B)。これまでに、ピリジンにアルキル、アリール、トリフルオロメチル、そしてアシルラジカルを付加できることが報告されている(3)。しかし、ピリジルラジカルを用いたビピリジン骨格の合成例は未だない。この原因は、生成したピリジルラジカルが、ラジカルπ-受容体としてのピリジンとピリジルラジカル前駆体の両者に対して反応しうることから、クロスカップリング選択性が難しいためであると考えられる。

今回、McNally助教授らは彼らがこれまで注力してきたピリジルホスホニウム塩の研究において、B2pin2を用いたボリル化反応の検討中(4)、予期せずピリジルホスホニウム塩とシアノピリジンが位置選択的にクロスカップリングすることを発見した(図1C)。本反応はMinisci反応のようなラジカル付加機構ではなく、ラジカル–ラジカルカップリング機構で進行する。

図1. (A) 金属触媒を用いたクロスカップリングによるビピリジン合成 (B) Minisci反応 (C) ラジカル–ラジカルカップリングによるビピリジン合成

 

A Pyridine-Pyridine Cross-Coupling Reaction via Dearomatized Radical Intermediates

Koniarczyk. J. L.; Greenwood. J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed.2019, Early view

DOI: 10.1002/anie.201906267

論文著者の紹介

研究者: Andrew McNally

研究者の経歴:
–2003 M.A., M.Sc., Natural Sciences, University of Cambridge (Prof. Ian Paterson)
2003–2007 Ph.D., University of Cambridge (Prof. Matthew J. Gaunt)
2007–2011 Postdoc, Princeton University (Prof. David W. C. MacMillan)
2011–2014 Postdoc, University of Cambridge (Prof. Matthew J. Gaunt)
2014– Assistant Professor, Colorado State University

研究内容:複素環式化合物の直接官能基化反応の開発

研究者: Robert S Paton

研究者の経歴:
–2004 M.A., M.Sc., Natural Sciences, University of Cambridge
2005–2008 Ph.D., University of Cambridge (Prof. J. M. Goodman)
2009–2010 Postdoc., the University of California (Prof. K. N. Houk)
2010–2014 University Lecturer, University of Oxford
2014–2018 AssociateProfessor,University of Oxford (with tenure)
2018– AssociateProfessor, Colorado State University

研究内容:コンピューターによる触媒設計、データ駆動型化学

論文の概要

本反応は、ピリジルホスホニウム塩1とシアノピリジン2を、B2pin2、トリエチルアミン存在下1,2-ジクロロエタン溶媒中室温で反応させることで、2,4’-ビピリジン3を生成する(図2A)。本反応では、2位および3位に置換基をもつピリジルホスホニウム塩1が良好な収率で対応するビピリジン(3a,3b)を与えた。シアノピリジン2に関しては、3位にアルキル基やヘテロ芳香環をもつ基質でも対応する2,4’-ビピリジン(3c,3d)が生成する。

著者らは、ラジカル捕捉実験及びDFT計算などの反応機構解明実験を行い、反応機構を次のように提唱した(図2B)。B2pin2とシアノピリジン2が反応してInt-1が形成した後、ラジカル均一開裂によりシアノピリジンラジカル2’が生成する(図2Ba)。次に2’1が反応してInt-2が生成し、これが分子内1電子移動(SET)することで、ホスホニウムピリジルラジカル1’2が生成する。なお、1’2’の別の生成経路として、B2pin21および2から生成するInt-3の均一開裂もエネルギー的に起こりうることがDFT計算で示唆されている。このようにして生成した2’1’がラジカル–ラジカルカップリングすることで中間体4が生成する。Et3N存在下4が脱ホウ素およびPPh3の脱離によって5となり、最後に5が空気酸化されることで2,4’-ビピリジン3が生成する(図2Bb)。

以上、B2pin2を電子移動試薬として用い、ピリジルホスホニウム塩1とシアノピリジン2がラジカル–ラジカルカップリングすることを発見した。非金属触媒条件下、簡便な操作で反応が進行するため、医薬品合成へのさらなる応用が期待できる。

図2. (A) 基質適用範囲 (B) 推定反応機構

 

参考文献

  1. A. J.; Mercer, S. P.; Schreier, J. D.; Cox, C. D.; Fraley, M. E.; Steen, J. T.; Lemaire, W.; Bruno, J. G.; Harrell, C. M.; Garson, S. L.; Gotter, A. L.; Fox, S. V.; Stevens, J.; Tannenbaum, P. L.; Prueksaritanont, T.; Cabalu, T. D.; Cui, D.; Stellabott, J.; Hartman, G. D.; Young, S. D.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. ChemMedChem.2014,9, 311. DOI: 10.1002/cmdc.201300447
  2. Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058. DOI: 10.1039/b616082d
  3. Duncton, M. A. MedChemComm2011, 2, 1135. DOI: 1039/C1MD00134E
  4. (a) Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799.DOI: 1126/science.aas8961(b) Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc.2019, Just Accepted. DOI: 10.1021/jacs.9b08504
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2010年ノーベル化学賞ーお祭り編
  2. E-mail Alertを活用しよう!
  3. 日本化学会と対談してきました
  4. 結晶構造データは論文か?CSD Communicationsの公…
  5. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  6. アイルランドに行ってきた②
  7. 【太陽HD】新卒採用情報(20年卒)
  8. 大学院生のつぶやき:研究助成の採択率を考える

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2008年ウルフ賞受賞者発表
  2. tRNAの新たな役割:大豆と微生物のコミュニケーション
  3. ご注文は海外大学院ですか?〜選考編〜
  4. 特許の基礎知識(1)そもそも「特許」って何?
  5. ロイカート・ヴァラッハ反応 Leuckart-Wallach Reaction
  6. 逆転写ポリメラーゼ連鎖反応(RT-PCR; reverse transcription PCR)
  7. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議」応募開始
  8. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を教えます!
  9. ベンゼン環が速く・キレイに描けるルーズリーフ
  10. 低分子の3次元構造が簡単にわかる!MicroEDによる結晶構造解析

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬

有機合成化学協会が発行する有機合成化学協会誌、2020年9月号がオンライン公開されました。完…

Chem-Station Twitter

PAGE TOP