[スポンサーリンク]

化学者のつぶやき

ピリジン同士のラジカル-ラジカルカップリング

[スポンサーリンク]

電子移動試薬としてB2pin2を用いたピリジルホスホニウム塩とシアノピリジンのクロスカップリング反応が開発された。ラジカルラジカルカップリングで位置選択的に2,4ビピリジンが生成する。

カップリング法によるビピリジン合成

ビピリジン骨格は多くの医薬品にある重要な骨格であり(1)、その効率的な合成法が強く望まれている。ビピリジンは金属触媒を用いたクロスカップリングで合成できるが、ハロゲン化物、ピリジン金属化合物などの原料合成に多工程を要するという課題があった(図1A)(2)。一方、ピリジンの直接官能基化反応として、Minisci反応に代表されるラジカル付加反応が近年注目を集めている(3)。この反応は酸などで活性化されたピリジン類(ピリジニウム塩)に対し、炭素ラジカルを付加することでピリジンの直接官能基を実現している(図1B)。これまでに、ピリジンにアルキル、アリール、トリフルオロメチル、そしてアシルラジカルを付加できることが報告されている(3)。しかし、ピリジルラジカルを用いたビピリジン骨格の合成例は未だない。この原因は、生成したピリジルラジカルが、ラジカルπ-受容体としてのピリジンとピリジルラジカル前駆体の両者に対して反応しうることから、クロスカップリング選択性が難しいためであると考えられる。

今回、McNally助教授らは彼らがこれまで注力してきたピリジルホスホニウム塩の研究において、B2pin2を用いたボリル化反応の検討中(4)、予期せずピリジルホスホニウム塩とシアノピリジンが位置選択的にクロスカップリングすることを発見した(図1C)。本反応はMinisci反応のようなラジカル付加機構ではなく、ラジカル–ラジカルカップリング機構で進行する。

図1. (A) 金属触媒を用いたクロスカップリングによるビピリジン合成 (B) Minisci反応 (C) ラジカル–ラジカルカップリングによるビピリジン合成

 

A Pyridine-Pyridine Cross-Coupling Reaction via Dearomatized Radical Intermediates

Koniarczyk. J. L.; Greenwood. J. W.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Angew. Chem., Int. Ed.2019, Early view

DOI: 10.1002/anie.201906267

論文著者の紹介

研究者: Andrew McNally

研究者の経歴:
–2003 M.A., M.Sc., Natural Sciences, University of Cambridge (Prof. Ian Paterson)
2003–2007 Ph.D., University of Cambridge (Prof. Matthew J. Gaunt)
2007–2011 Postdoc, Princeton University (Prof. David W. C. MacMillan)
2011–2014 Postdoc, University of Cambridge (Prof. Matthew J. Gaunt)
2014– Assistant Professor, Colorado State University

研究内容:複素環式化合物の直接官能基化反応の開発

研究者: Robert S Paton

研究者の経歴:
–2004 M.A., M.Sc., Natural Sciences, University of Cambridge
2005–2008 Ph.D., University of Cambridge (Prof. J. M. Goodman)
2009–2010 Postdoc., the University of California (Prof. K. N. Houk)
2010–2014 University Lecturer, University of Oxford
2014–2018 AssociateProfessor,University of Oxford (with tenure)
2018– AssociateProfessor, Colorado State University

研究内容:コンピューターによる触媒設計、データ駆動型化学

論文の概要

本反応は、ピリジルホスホニウム塩1とシアノピリジン2を、B2pin2、トリエチルアミン存在下1,2-ジクロロエタン溶媒中室温で反応させることで、2,4’-ビピリジン3を生成する(図2A)。本反応では、2位および3位に置換基をもつピリジルホスホニウム塩1が良好な収率で対応するビピリジン(3a,3b)を与えた。シアノピリジン2に関しては、3位にアルキル基やヘテロ芳香環をもつ基質でも対応する2,4’-ビピリジン(3c,3d)が生成する。

著者らは、ラジカル捕捉実験及びDFT計算などの反応機構解明実験を行い、反応機構を次のように提唱した(図2B)。B2pin2とシアノピリジン2が反応してInt-1が形成した後、ラジカル均一開裂によりシアノピリジンラジカル2’が生成する(図2Ba)。次に2’1が反応してInt-2が生成し、これが分子内1電子移動(SET)することで、ホスホニウムピリジルラジカル1’2が生成する。なお、1’2’の別の生成経路として、B2pin21および2から生成するInt-3の均一開裂もエネルギー的に起こりうることがDFT計算で示唆されている。このようにして生成した2’1’がラジカル–ラジカルカップリングすることで中間体4が生成する。Et3N存在下4が脱ホウ素およびPPh3の脱離によって5となり、最後に5が空気酸化されることで2,4’-ビピリジン3が生成する(図2Bb)。

以上、B2pin2を電子移動試薬として用い、ピリジルホスホニウム塩1とシアノピリジン2がラジカル–ラジカルカップリングすることを発見した。非金属触媒条件下、簡便な操作で反応が進行するため、医薬品合成へのさらなる応用が期待できる。

図2. (A) 基質適用範囲 (B) 推定反応機構

 

参考文献

  1. A. J.; Mercer, S. P.; Schreier, J. D.; Cox, C. D.; Fraley, M. E.; Steen, J. T.; Lemaire, W.; Bruno, J. G.; Harrell, C. M.; Garson, S. L.; Gotter, A. L.; Fox, S. V.; Stevens, J.; Tannenbaum, P. L.; Prueksaritanont, T.; Cabalu, T. D.; Cui, D.; Stellabott, J.; Hartman, G. D.; Young, S. D.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. ChemMedChem.2014,9, 311. DOI: 10.1002/cmdc.201300447
  2. Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058. DOI: 10.1039/b616082d
  3. Duncton, M. A. MedChemComm2011, 2, 1135. DOI: 1039/C1MD00134E
  4. (a) Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R. S.; McNally, A. Science 2018, 362, 799.DOI: 1126/science.aas8961(b) Boyle, B. T.; Hilton, M. C.; McNally, A. J. Am. Chem. Soc.2019, Just Accepted. DOI: 10.1021/jacs.9b08504
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 米国へ講演旅行へ行ってきました:Part IV
  2. 化学研究ライフハック: Evernoteで論文PDFを一元管理!…
  3. 2つのアシロイン縮合
  4. 抗結核薬R207910の不斉合成
  5. 第2回「Matlantis User Conference」
  6. タングトリンの触媒的不斉全合成
  7. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  8. 第18回ケムステVシンポ『”やわらか電子材料R…

注目情報

ピックアップ記事

  1. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  2. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~
  3. π-アリルパラジウム錯体
  4. NeoCube 「ネオキューブ」
  5. 首席随員に野依良治氏 5月の両陛下欧州訪問
  6. 玉尾皓平 Kohei Tamao
  7. クロスカップリング反応関連書籍
  8. 天才児の見つけ方・育て方
  9. 粉いらずの指紋検出技術、米研究所が開発
  10. MOF 結晶表面の敏感な応答をリアルタイム観察

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP