[スポンサーリンク]

化学者のつぶやき

ペプチド模倣体としてのオキセタニルアミノ酸

[スポンサーリンク]

スイス連邦工科大学チューリヒ校・Erick M. Carreiraらは、ペプチド等価体の一つであるオキセタニルアミノ酸含有ペプチドを、立体選択的に合成する方法論を開発した。これを用いてオピオイドの一種であるエンケファリンの類縁体を合成し、in vitroin vivo試験によってオキセタニルペプチド構造の有効性を主張している。

“Oxetanyl Amino Acids for Peptidomimetics”
Möller, G. P.; Müller, S.; Wolfstadter, B. T.; Wolfrum, S.: Schepmann, D.; Wünsch, B.; Carreira, E. M.* Org. Lett. 2017, 19, 2510−2513. DOI: 10.1021/acs.orglett.7b00745

問題設定と解決

非天然アミノ酸含有ペプチドが中分子創薬の文脈から注目を集めていることは周知の事実である。オキセタニルペプチドは、構造的にペプチド結合に近く、水素結合供与体・受容体の両方として働ける。一方で非天然構造のため代謝されにくく、二級アミンを含むために水素結合の関与パタンが通常のペプチド結合とは異なりうる。

冒頭論文より引用

Carreiraらは以前よりカルボニル基の生物学的等価体となるオキセタン構造の医薬応用研究に取り組んでおり[1]、ペプチドカルボニル代替としての応用も既に報告していた[2]。オキセタニルペプチドの合成は2014年、CarreiraとShipmanによってほぼ同時期に個別報告されていた[3]。 しかしながらオキセタノンを出発物質とする既存合成法は、短工程である一方、オキセタン隣接側鎖の立体を制御できず、グリシン等価構造にしか適用できないという問題があった。

本論文ではこれを解決し、生物活性物質の合成へと適用することで、医薬応用への道を提示した。

技術と手法の肝

Ellmanイミンへの不斉付加によってオキセタン隣接側鎖の立体をうまく制御し、グリシン等価構造以外のオキセタニルジペプチドを立体選択的に合成することに成功した。合成経路の一例を下に示す。

オキセタニルアミンは側鎖RがGly, Phe, Val, Ala, Leu, Ser(Bn), Cys(tBu), Pro, Asp(tBu), Tyr(Bn)相当のものが合成可能。最後の置換反応は収率がまちまちだが、ほとんどの天然型側鎖構造(R’)に適用可能である。オキセタン部位はたいていの化学条件に安定であり、また当然ながら隣接位のエピ化も起きない。

主張の有効性検証

オキセタニルペプチド構造を含むLeu-enkephalinアナログを種々合成し、in vitro・ in vivo試験を行なうことによってペプチド模倣体としての有効性を検証している(下図)。

冒頭論文より引用

  1. Leu-enkephalinアナログの安定性をヒト血清中で測定したところ、A、Bの位置をオキセタンにすると半減期が大きく延長することが分かった。
  2. マウスの脳を用い、Leu-enkephalinアナログとオピオイド受容体の結合のアッセイを行った。するとC、Dの位置をオキセタンにしたものが結合しやすいことが分かった。
  3. Leu-enkephalinアナログをマウスに投与し、Hot Plate Test[4]を行った。するとDの位置をオキセタンにしたものを投与したとき、天然型Leu-enkephalin投与に比べ、反応を示すまでの時間が延長した。

議論すべき点

  • 医薬構造に気軽に組み込むには、合成法はまだまだ手間に見える。第一世代ルートにおける共役付加の不斉制御が上手く行けば、短工程なルートになりそう。ただニトロ基α位なので、限度があるかも知れない。
  • Leu-enkephalinアナログのマウスアッセイ結果は、天然型に比べても大きく力価が変わらないように見える。論文としての説得力・主張力が弱くなっているのは否めないか。
  • ただ、オキセタニルペプチドの生物実験を行い、医薬応用への可能性を示したことそのものは大きな貢献。いずれ本格的に医薬に利用される可能性もあると感じた。

次に読むべき論文は?

  • 長鎖ペプチドへの応用が次なる課題であるが、オキセタニルペプチドの固相合成例がShipmanらによって最近報告されている[5]。

参考文献

  1. Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Mller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 9052. DOI: 10.1002/anie.200907155
  2. McLaughlin, M.; Yazaki, R.; Fessard, T. C.; Carreira, E. M. Org. Lett. 2014, 16, 4070. DOI: 10.1021/ol501590n
  3. Powell, N. H.; Clarkson, G. J.; Notman, R.; Raubo, P.; Martin, N. G.; Shipman, M. Chem. Commun. 2014, 50, 8797. DOI: 10.1039/C4CC03507K
  4. マウスを54℃のプレートの上に置き、反応を示すまでの時間を測定する。鎮静作用があると、反応を起こすまでの時間が長くなる。
  5. Beadle, J. D.; Knuhtsen, A.; Hoose, A.; Raubo, P.; Jamieson, A. G.; Shipman, M. Org. Lett. 2017, 19, 3303. DOI: 10.1021/acs.orglett.7b01466
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. “関節技”でグリコシル化を極める!
  2. アステラス病態代謝研究会 2018年度助成募集
  3. アルメニア初の化学系国際学会に行ってきた!②
  4. 炭素をつなげる王道反応:アルドール反応 (3)
  5. 血液型をChemistryしてみよう!
  6. メタンガスと空気からメタノールを合成する
  7. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前…
  8. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 向かい合わせになったフェノールが織りなす働き
  2. これからの研究開発状況下を生き抜くための3つの資質
  3. リサイクルが容易な新しいプラスチックを研究者が開発
  4. 酸窒化物合成の最前線:低温合成法の開発
  5. 触媒なの? ?自殺する酵素?
  6. 化学でもフェルミ推定
  7. 新しい量子化学 電子構造の理論入門
  8. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate
  9. ヴィ·ドン Vy M. Dong
  10. クレメンゼン還元 Clemmensen Reduction

関連商品

注目情報

注目情報

最新記事

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

Chem-Station Twitter

PAGE TOP