[スポンサーリンク]

一般的な話題

核酸医薬の物語1「化学と生物学が交差するとき」

[スポンサーリンク]

 

低分子医薬とも、抗体医薬とも違う次世代の医薬として期待されている核酸医薬。自然そのものの仕組みを明らかにする生物学に対して、ひとの手で自然にあるものを改良し不可能を可能に変える化学のアプローチは、核酸医薬にどのような魅力と可能性をもたらすのでしょうか。

化学と生物学が交差するとき物語は始まる

目次

自分Greenは、以前に「抗体医薬」の記事(参照:低分子医薬の代わりに抗体医薬がトップに?)を書かせていただきました。今度は、次世代医薬もうひとつの巨塔「核酸医薬」について書いていきたいと思います。核酸医薬は、抗体医薬よりも背景知識が広範に必要なため、上手くスッキリ書けるか分かりませんが、ぜひともご容赦ください。  

 

いわゆる核酸医薬の原理は、ウイルスを運び屋とした遺伝子治療とは、まったく異なります。遺伝子治療では、細胞に導入したDNAの塩基配列が、やがてアミノ酸配列に変換されタンパク質を作ることで、効果を発揮します。これに対して、核酸医薬では、体の中で起こる現象を、核酸自体が調節することで、効果を発揮します。核酸医薬の場合、遺伝子治療のように細胞核の中にあるゲノムDNAの配列を書き換えることはありません。

GREENk01.PNG

核酸自体が生命現象を調節する主役であるため、核酸医薬の原理を理解する上で、まず大切なことは核酸自体の化学性質です。ここで言う核酸とは、具体的に言うと、RNAであったりDNAであったりのことです。核酸はヌクレオチドと呼ばれるユニットがたくさん連なった高分子です。ビーズをつなげてネックレスを作るように、ヌクレオチドの配列には多彩なパターンがあります。この多様な配列により、核酸はそれぞれ複雑な立体構造を取ります。二重らせんだけでなく、自分の鎖の中で塩基対を形成すればより込み入った構造を取ります。

GREENk02.PNG

核酸に多彩な機能を持たせることが可能な一方で、核酸はこのように似たようなユニットのつながりで成り立っているため、核酸医薬は安定して大量合成が可能です。例えば、ゼロからタキソールのように複雑な構造の化合物を作ろうとすればあの手この手で化学反応を使い分ける必要があります。また、抗体医薬ならば鶏卵なり培養細胞なり生き物を用意してそこから手間をかけて抗体タンパク質を精製しなければなりません。当然、製造コストにこれらの事情は大きく響きます。一方、核酸医薬ならば、材料を用意して、同じような反応を何回か繰り返すだけで、目的の産物を手にすることができます。

また、核酸医薬は化学合成できるからこそ、人工の改変核酸をはじめ自然にあったものを改良して不可能を可能に変える化学の立場から貢献できる場面がたくさんあります。そのままのRNAやDNAには限界があり、どうしても天然のままのかたちでは薬として不都合があります。

GREENk03.PNG

ではでは、具体例をあげて、核酸医薬の仕組みを詳しく解説していきましょうか。

戦略1.RNAと相互作用して遺伝子の発現を調節するタイプ

戦略2.タンパク質など標的分子と相互作用して機能そのものを調節するタイプ

……と言いたいところですが、すみません。まだまだまったく本題までたどり着けていないため、何が面白いのかさっぱりかもしれませんが、いっぺんに説明してしまうと、とても長くなってしまうため、分割することにしました。もとの草稿はもうあるのですが、推敲してぼちぼち公開していきたいと思います。

化学と生物学が交差するとき物語は始まる 

ぼやき「ふたつが交差するところまで書こうとするから記事が長くなるのだけれども……」

 

関連書籍

 

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  2. アメリカ大学院留学:TAの仕事
  3. GRE Chemistry 受験報告 –試験当日·結果発表編–
  4. ゲルマニウムビニリデン
  5. ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測して…
  6. 工学的応用における小分子キラリティーの付加価値: Nature …
  7. ダイヤモンドは砕けない
  8. START your chemi-storyー日産化学工業会社説…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 生体分子反応を制御する: 化学的手法による機構と反応場の解明
  2. ミック因子 (Myc factor)
  3. 高分子の合成(上)(下)
  4. 伊丹健一郎 Kenichiro Itami
  5. 村井 眞二 Shinji Murai
  6. セレノネイン selenoneine
  7. Callipeltosideの全合成と構造訂正
  8. 木曽 良明 Yoshiaki Kiso
  9. 有機合成の落とし穴
  10. シアノスター Cyanostar

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
« 3月   5月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP