[スポンサーリンク]

化学者のつぶやき

アルドール・スイッチ Aldol-Switch

[スポンサーリンク]

 

ポリフェノールの一種であるresveratrolに食品アレルギー予防効果があるという記事を先日ケムステニュースで紹介しました。

ケムステニュース 「ポリフェノールに食品アレルギー予防効果」

 

ところで、このresveratrol、植物ではどのように生合成されているのでしょうか?

 

今回は、resveratrol生成に関わるstilben synthase(STS)の反応機構について紹介してみたいと思います。

 

resveratrolは、赤ワインに豊富に含まれるポリフェノールです。天然では、p-coumaloyl-CoAmalonyl-CoAを原料としてstilben synthase(STS)という酵素により生合成されています。

pathway.gif

 

stilbene synthase(STS)は、type III PKSという酵素に属しています。type III PKSは、KSドメインのみを持つPKSです。stilbene synthase(STS)は、同じくtype III PKSであるカルコン合成酵素Chalcone Synthase (CHS)とアミノ酸レベルで75?90%という高い相同生を持ちます。どちらの酵素も同じ基質からtetraketide中間体を生成しますが、2つの酵素で環化様式が異なるため、異なる生成物を生み出します。

 

では、なぜ環化様式が異なるのでしょうか?

 

酵素の反応機構を知るにはX線結晶構造を見るのが一番です。結晶構造を見てみましょう!

 

structure.gif

上の図は、CHSの結晶構造です。CHSはホモダイマーを形成しています。図Aの赤い四角のところが活性部位です。図Bが活性部位のアミノ酸残基を表しています。STSもほぼ同じ結晶構造をしています。type III PKSでは、164番目のCystein、303番目のHistidine、336番目のAsparagineで、Cys-His-Asnのcatalytic triadを形成しています。

(type III PKSは非常に良く研究されており、酵素キャビティを構成する一つ一つのアミノ酸残基について役割が調べられているのですが、今回は紙面の都合上説明を省略します。)

 

condensation mechanism.png

type III PKSの酵素反応機構は上図に示すようになっております。

まず、開始基質(p-coumaloyl-CoA)が酵素活性部位に取り込まれCys上にロードされます。その後、伸長基質であるmalonyl-CoAが脱炭酸を伴い開始基質に縮合されます。この縮合反応の繰り返しによりポリケト鎖が伸長されていきます。

tetra ketide中間体ができた後の環化反応ですが、CHSではC6→C1Claisen-typeの環化が起きるのに対し、STSではC2→C7Aldol-typeの環化が起きています。

なぜ環化様式にこのような違いが生じるのでしょうか?

 

その答えは、CHSSTSの結晶構造を比較すれば分かります。

 

Aldol switch.png

図 灰色:CHS,  緑:STS

CHSとSTSの結晶構造を比べたところ、数カ所のアミノ酸残基で違いが見られました。変異実験などの結果により、132番目Threonin残基の位置が非常に重要であることが分かりました。(上図(B)参照)

STSでは、T132E192S338の3残基で水で水素結合ネットワークを形成しており、これは’’アルドールスイッチ’’として知られています。(上図D参照)

 

active site.gif

アルドールスイッチは水分子を活性化し、水分子の求核攻撃によりtetra ketide中間体と酵素とのチオエステル結合を切断します。CHSでは、T132と水分子との距離が遠いため水分子を活性化できないようです。

 

 

CHS STS mechanism.png

 

以上説明したように、たった一残基のアミノ酸の違いで、反応様式がガラッと変わってしまうのです。酵素の反応機構を研究していると、反応制御の精巧さに驚かされます。

 

参考論文

  • ’’An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases’’ Michael B. Austin, Marianne E. Bowman, Jean-Luc Ferrer, Joachim Schroder, and Joseph P. Noel Chemistry & Biology, Vol. 11, 1179–1194 (2004) DOI 10.1016/j.chembiol.2004.05.024
  • ’’Structure and function of the chalcone synthase superfamily of plant type III polyketide syntheses’’ Ikuro Abe and Hiroyuki Morita Nat. Prod. Rep., 2010, 27, 809–838 | 809  DOI: 10.1039/b909988n
ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 博士課程の夢:また私はなぜ心配するのを止めて進学を選んだか
  2. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…
  3. 炭素置換Alアニオンの合成と性質の解明
  4. 有機合成化学協会誌2020年6月号:Chaxine 類・前周期遷…
  5. 実験する時の服装(企業研究所)
  6. 第4回CSJ化学フェスタに参加してきました!
  7. エステルからエーテルをつくる脱一酸化炭素金属触媒
  8. 免疫の生化学 (1) 2018年ノーベル医学賞解説

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 日本学術振興会賞受賞者一覧
  2. 単一分子の電界発光の機構を解明
  3. 芳香族トリフラートからアリールラジカルを生成する
  4. バンバーガー転位 Bamberger Rearrangement
  5. 酸化反応条件で抗酸化物質を効率的につくる
  6. AIを搭載した化学物質毒性評価サービス「Chemical Analyzer」の販売を開始
  7. 農薬メーカの事業動向・戦略について調査結果を発表
  8. リガンドによりCO2を選択的に導入する
  9. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  10. ノーベル化学賞への道公開

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

研究テーマ変更奮闘記 – PhD留学(前編)

研究をやる上で、テーマってやっぱり大事ですよね。私はアメリカの大学院に留学中(終盤)という立場ですが…

Chem-Station Twitter

PAGE TOP