[スポンサーリンク]

化学者のつぶやき

アルドール・スイッチ Aldol-Switch

[スポンサーリンク]

 

ポリフェノールの一種であるresveratrolに食品アレルギー予防効果があるという記事を先日ケムステニュースで紹介しました。

ケムステニュース 「ポリフェノールに食品アレルギー予防効果」

 

ところで、このresveratrol、植物ではどのように生合成されているのでしょうか?

 

今回は、resveratrol生成に関わるstilben synthase(STS)の反応機構について紹介してみたいと思います。

 

resveratrolは、赤ワインに豊富に含まれるポリフェノールです。天然では、p-coumaloyl-CoAmalonyl-CoAを原料としてstilben synthase(STS)という酵素により生合成されています。

pathway.gif

 

stilbene synthase(STS)は、type III PKSという酵素に属しています。type III PKSは、KSドメインのみを持つPKSです。stilbene synthase(STS)は、同じくtype III PKSであるカルコン合成酵素Chalcone Synthase (CHS)とアミノ酸レベルで75?90%という高い相同生を持ちます。どちらの酵素も同じ基質からtetraketide中間体を生成しますが、2つの酵素で環化様式が異なるため、異なる生成物を生み出します。

 

では、なぜ環化様式が異なるのでしょうか?

 

酵素の反応機構を知るにはX線結晶構造を見るのが一番です。結晶構造を見てみましょう!

 

structure.gif

上の図は、CHSの結晶構造です。CHSはホモダイマーを形成しています。図Aの赤い四角のところが活性部位です。図Bが活性部位のアミノ酸残基を表しています。STSもほぼ同じ結晶構造をしています。type III PKSでは、164番目のCystein、303番目のHistidine、336番目のAsparagineで、Cys-His-Asnのcatalytic triadを形成しています。

(type III PKSは非常に良く研究されており、酵素キャビティを構成する一つ一つのアミノ酸残基について役割が調べられているのですが、今回は紙面の都合上説明を省略します。)

 

condensation mechanism.png

type III PKSの酵素反応機構は上図に示すようになっております。

まず、開始基質(p-coumaloyl-CoA)が酵素活性部位に取り込まれCys上にロードされます。その後、伸長基質であるmalonyl-CoAが脱炭酸を伴い開始基質に縮合されます。この縮合反応の繰り返しによりポリケト鎖が伸長されていきます。

tetra ketide中間体ができた後の環化反応ですが、CHSではC6→C1Claisen-typeの環化が起きるのに対し、STSではC2→C7Aldol-typeの環化が起きています。

なぜ環化様式にこのような違いが生じるのでしょうか?

 

その答えは、CHSSTSの結晶構造を比較すれば分かります。

 

Aldol switch.png

図 灰色:CHS,  緑:STS

CHSとSTSの結晶構造を比べたところ、数カ所のアミノ酸残基で違いが見られました。変異実験などの結果により、132番目Threonin残基の位置が非常に重要であることが分かりました。(上図(B)参照)

STSでは、T132E192S338の3残基で水で水素結合ネットワークを形成しており、これは’’アルドールスイッチ’’として知られています。(上図D参照)

 

active site.gif

アルドールスイッチは水分子を活性化し、水分子の求核攻撃によりtetra ketide中間体と酵素とのチオエステル結合を切断します。CHSでは、T132と水分子との距離が遠いため水分子を活性化できないようです。

 

 

CHS STS mechanism.png

 

以上説明したように、たった一残基のアミノ酸の違いで、反応様式がガラッと変わってしまうのです。酵素の反応機構を研究していると、反応制御の精巧さに驚かされます。

 

参考論文

  • ’’An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases’’ Michael B. Austin, Marianne E. Bowman, Jean-Luc Ferrer, Joachim Schroder, and Joseph P. Noel Chemistry & Biology, Vol. 11, 1179–1194 (2004) DOI 10.1016/j.chembiol.2004.05.024
  • ’’Structure and function of the chalcone synthase superfamily of plant type III polyketide syntheses’’ Ikuro Abe and Hiroyuki Morita Nat. Prod. Rep., 2010, 27, 809–838 | 809  DOI: 10.1039/b909988n
ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレ…
  2. 【朗報】HGS分子構造模型が入手可能に!
  3. CRISPRで薬剤分子-タンパク相互作用を解明する
  4. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フ…
  5. 脳を透明化する手法をまとめてみた
  6. 有機合成化学協会誌2018年5月号:天然物化学特集号
  7. CRISPRの謎
  8. 続・日本発化学ジャーナルの行く末は?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 触媒なの? ?自殺する酵素?
  2. レスベラトロール /resveratrol
  3. 「神経栄養/保護作用を有するセスキテルペン類の全合成研究」ースクリプス研究所 Ryan Shenvi研より
  4. 総合化学4社、最高益を更新 製造業の需要高く
  5. アルコールのアルカンへの還元 Reduction from Alcohol to Alkane
  6. オペレーションはイノベーションの夢を見るか? その1
  7. as well asの使い方
  8. ルーベン・マーティン Ruben Martin
  9. シュミット転位 Schmidt Rearrangement
  10. スルホキシド/セレノキシドのsyn-β脱離 Syn-β-elimination of Sulfoxide/Selenoxide

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

Chem-Station Twitter

PAGE TOP