[スポンサーリンク]

化学者のつぶやき

アルドール・スイッチ Aldol-Switch

 

ポリフェノールの一種であるresveratrolに食品アレルギー予防効果があるという記事を先日ケムステニュースで紹介しました。

ケムステニュース 「ポリフェノールに食品アレルギー予防効果」

 

ところで、このresveratrol、植物ではどのように生合成されているのでしょうか?

 

今回は、resveratrol生成に関わるstilben synthase(STS)の反応機構について紹介してみたいと思います。

 

resveratrolは、赤ワインに豊富に含まれるポリフェノールです。天然では、p-coumaloyl-CoAmalonyl-CoAを原料としてstilben synthase(STS)という酵素により生合成されています。

pathway.gif

 

stilbene synthase(STS)は、type III PKSという酵素に属しています。type III PKSは、KSドメインのみを持つPKSです。stilbene synthase(STS)は、同じくtype III PKSであるカルコン合成酵素Chalcone Synthase (CHS)とアミノ酸レベルで75?90%という高い相同生を持ちます。どちらの酵素も同じ基質からtetraketide中間体を生成しますが、2つの酵素で環化様式が異なるため、異なる生成物を生み出します。

 

では、なぜ環化様式が異なるのでしょうか?

 

酵素の反応機構を知るにはX線結晶構造を見るのが一番です。結晶構造を見てみましょう!

 

structure.gif

上の図は、CHSの結晶構造です。CHSはホモダイマーを形成しています。図Aの赤い四角のところが活性部位です。図Bが活性部位のアミノ酸残基を表しています。STSもほぼ同じ結晶構造をしています。type III PKSでは、164番目のCystein、303番目のHistidine、336番目のAsparagineで、Cys-His-Asnのcatalytic triadを形成しています。

(type III PKSは非常に良く研究されており、酵素キャビティを構成する一つ一つのアミノ酸残基について役割が調べられているのですが、今回は紙面の都合上説明を省略します。)

 

condensation mechanism.png

type III PKSの酵素反応機構は上図に示すようになっております。

まず、開始基質(p-coumaloyl-CoA)が酵素活性部位に取り込まれCys上にロードされます。その後、伸長基質であるmalonyl-CoAが脱炭酸を伴い開始基質に縮合されます。この縮合反応の繰り返しによりポリケト鎖が伸長されていきます。

tetra ketide中間体ができた後の環化反応ですが、CHSではC6→C1Claisen-typeの環化が起きるのに対し、STSではC2→C7Aldol-typeの環化が起きています。

なぜ環化様式にこのような違いが生じるのでしょうか?

 

その答えは、CHSSTSの結晶構造を比較すれば分かります。

 

Aldol switch.png

図 灰色:CHS,  緑:STS

CHSとSTSの結晶構造を比べたところ、数カ所のアミノ酸残基で違いが見られました。変異実験などの結果により、132番目Threonin残基の位置が非常に重要であることが分かりました。(上図(B)参照)

STSでは、T132E192S338の3残基で水で水素結合ネットワークを形成しており、これは’’アルドールスイッチ’’として知られています。(上図D参照)

 

active site.gif

アルドールスイッチは水分子を活性化し、水分子の求核攻撃によりtetra ketide中間体と酵素とのチオエステル結合を切断します。CHSでは、T132と水分子との距離が遠いため水分子を活性化できないようです。

 

 

CHS STS mechanism.png

 

以上説明したように、たった一残基のアミノ酸の違いで、反応様式がガラッと変わってしまうのです。酵素の反応機構を研究していると、反応制御の精巧さに驚かされます。

 

参考論文

  • ’’An Aldol Switch Discovered in Stilbene Synthases Mediates Cyclization Specificity of Type III Polyketide Synthases’’ Michael B. Austin, Marianne E. Bowman, Jean-Luc Ferrer, Joachim Schroder, and Joseph P. Noel Chemistry & Biology, Vol. 11, 1179–1194 (2004) DOI 10.1016/j.chembiol.2004.05.024
  • ’’Structure and function of the chalcone synthase superfamily of plant type III polyketide syntheses’’ Ikuro Abe and Hiroyuki Morita Nat. Prod. Rep., 2010, 27, 809–838 | 809  DOI: 10.1039/b909988n
The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. シクロヘキサンの片面を全てフッ素化する
  2. ホットキーでクールにChemDrawを使いこなそう!
  3. YADOKARI-XG 2009
  4. ReadCubeを使い倒す!(2)~新着論文チェックにもRead…
  5. もし新元素に命名することになったら
  6. 最近の有機化学注目論文1
  7. 太陽ホールディングスってどんな会社?
  8. Reaxys体験レポート反応検索編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction
  2. アルカロイドの大量生産
  3. ホウ素と窒素固定のおはなし
  4. 統合失調症治療の新しいターゲット分子候補−HDAC2
  5. シリリウムカルボラン触媒を用いる脱フッ素水素化
  6. その実験結果信用できますか?
  7. 世界の最新科学ニュース雑誌を日本語で読めるーNature ダイジェストまとめ
  8. エーザイ、米国で抗てんかん剤「Banzel」(ルフィナミド)の小児適応の承認取得
  9. 高選択的なアルカンC–H酸化触媒の開発
  10. 疑惑の論文200本発見 米大が盗作探知プログラム開発

関連商品

注目情報

注目情報

最新記事

二重可変領域抗体 Dual Variable Domain Immunoglobulin

抗体医薬はリウマチやガンなどの難治性疾患治療に有効であり、現在までに活発に開発が進められてきた。…

サイエンスイングリッシュキャンプin東京工科大学

産業のグローバル化が進み、エンジニアにも国際的なセンスや語学力が求められているなか、東京工科大学(東…

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

Chem-Station Twitter

PAGE TOP