[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的Heck反応で三級アルキルフルオリドを合成する

[スポンサーリンク]

三置換フルオロアルケンのエナンチオ選択的Heck反応によって三級アルキルフルオリドを合成する手法が開発された。ベンジル位三級フッ素化合物の新たな合成法として利用されることが期待される。

三級アルキルフルオリドの合成法

フッ素は高い電気陰性度やC–F結合の高い化学安定性などの特徴から農薬や医薬品の分子設計で積極的に導入が試みられている。特に、酸化代謝を受けやすいベンジル位においてC–H結合の代わりに強固なC–F結合の導入が検討されている。

しかし、ベンジル位三級フッ化アルキルの結合をエナンチオ選択的に形成する方法は多くない。従来のエナンチオ選択的な手法として、カルボニルのα位フッ素化やインドール誘導体と求電子的フッ素化剤による反応など、立体選択的にC–F結合を形成する手法がある(1)

一方、最近、アルケニルフルオリドを出発物質に用いて、アルケンへの付加反応により三級アルキルフルオリドを合成する手法が開発されている。今野らは、銅を用いたキラルなγ-フルオロアリルアルコール誘導体とグリニャール試薬のSN2’反応によって立体特異的な三級アルキルフルオリドの合成に成功した(図1A)(2)。また、Hartwigらは不斉イリジウム触媒を用いたアリールアルケニルフルオリドのアリル位アルキル化によってキラルな三級アルキルフルオリドの合成法を報告した(図1B)(3)

今回、ユタ大学のSigman教授らは、以前より精力的に研究を続けているレドックスリレー型不斉Heck反応(図1C)に三置換フルオロアルケンに適用することで、ベンジル位三級フッ化アルキルの結合をエナンチオ選択的に形成することに成功したので紹介する(図1D)。

図1. (A) γ-フルオロアリルアルコールのSN2’反応 (B) アリル位置換反応 (C) レドックスリレーHeck反応 (D) 本論文の反応

 

Enantioselective construction of remote tertiary carbon–fluorine bonds
Liu, J.; Yuan, Q.; Toste, F. D.; Sigman, M. S. Nat. Chem.2019, 11, 710.
DOI: 10.1038/s41557-019-0289-7

論文著者の紹介

研究者:Matthew S. Sigman

研究者の経歴:
1992-1996 Ph.D, Washington State University (Prof. Bruce E. Eaton)
1996-1999 Postdoctoral Research Associate, Harvard University (Prof. Eric N. Jacobsen)
1999-2004 Assistant Professor, University of Utah
2004-2008 Associate Professor, University of Utah
2008-2012 Professor, University of Utah
2009-2010 Visiting Professor, Huntsman Cancer Institute, University of Utah
2012-           Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry

研究内容:Pd触媒を用いた不斉アリール化反応、多変量解析を通じた不斉触媒の迅速最適化・機構解析

論文の概要

Heck反応において三置換フルオロアルケンを用いる場合、フッ素の高い電気陰性度によりオレフィンの電子密度が低いことに加え、立体障害により金属触媒への配位能が低くなっていることが懸念される。また、挿入後にβ-フッ素脱離が起こる可能性があることが課題となる。
本反応は、酸素雰囲気下Pd(OTs)2(CH3CN)2/PyrOx触媒とdba存在下、フルオロアルケン1とアリールボロン酸2の不斉Heck反応によりβ-フルオロアルデヒド3が生成する(図2A)。本論文では3をNaBH4還元し、対応するアルコール4として得ている。エステル4b、アセトアミド4cを有するアリールボロン酸が適用できるように、本反応は官能基許容性が高い。また、嵩高いシクロヘキシル基4eや、ハロゲン(4f,4g)、トシラート(4h)をもつフルオロアルケンも用いることができる。特筆すべきことに、ホモアリルアルコール体より長い炭素鎖をもつフルオロアルケン(4i, 4j)を用いても反応は進行する。
反応機構はこれまでのレドックスリレー型Heck反応と同様であると考えられている(図1B)(4, 5)。すなわち、カチオン性アリールパラジウム51が配位して6となり、挿入反応の際に遷移状態7を経て8となる機構である。種々の対照実験から、1の配位能は二置換または三置換のアルケンより低いが、1は三置換アルケンより挿入がはやいことが示唆された。6はCurtin–Hammett支配下にある中間体であり、ここから本反応の律速段階であるPyrOx配位子とアルケンの立体反発が最小となる遷移状態7を経由する挿入反応により、位置および立体選択的に反応が進行すると考えられている。また、懸念された8のβ-フッ素脱離は起こらず、β-水素脱離が優先的に起こることもわかった。
以上、三置換フルオロアルケンからHeck反応によって三級アルキルフルオリドをエナンチオ選択的に合成した。含フッ素化合物に適用されてこなかった他の遷移金属触媒反応を一度含フッ素化合物に適用してみることでうまく反応が進行するかもしれない、そんなことも本論文は示しているのではないか。

図2. (A) 基質適用範囲 (B) 推定反応機構と相対速度

 

参考文献

  1. Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V. A.; Coelho, J. A. S.; Toste, F. D. Chem. Rev. 2018, 118, 3887. DOI:10.1021/acs.chemrev.7b00778
  2. Konno, T.; Ikemoto, A.; Ishihara, T. Org. Biomol. Chem.2012, 10, 8154. DOI:10.1039/c2ob25718a
  3. Butcher, T. W.; Hartwig, J. F. Angew. Chem., Int. Ed. 2018, 57, 13125. DOI:10.1002/anie.201807474
  4. Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340. DOI:1038/nature13231
  5. Hilton, M. J.; Cheng, B.; Buckley, B. R.; Xu, L.; Wiest, O.; Sigman, M. S. Tetrahedron2015, 71, 6513. DOI: 10.1016/j.tet.2015.05.020
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アイルランドに行ってきた②
  2. コンピューターが有機EL材料の逆項間交差の速度定数を予言!
  3. 10種類のスパチュラを試してみた
  4. 未踏の構造に魅せられて―ゲルセモキソニンの全合成
  5. 受賞者は1000人以上!”21世紀のノーベル賞…
  6. 昆虫細胞はなぜ室温で接着するのだろう?
  7. ケムステイブニングミキサー2024に参加しよう!
  8. ヘテロベンザイン

注目情報

ピックアップ記事

  1. 第43回ケムステVシンポ「光化学最前線2024」を開催します!
  2. 山本 尚 Hisashi Yamamoto
  3. 一次元の欠陥が整列した新しい有機−無機ハイブリッド化合物 -ペロブスカイト太陽電池の耐久性向上に期待-
  4. 岡本佳男 Yoshio Okamoto
  5. ITを駆使して新薬開発のスピードアップを図る米国製薬業界
  6. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!
  7. グラクソ、パーキンソン病治療薬「レキップ錠」を販売開始
  8. テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ほう酸ナトリウム水和物 : Sodium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Hydrate
  9. 2,4,6-トリイソプロピルベンゼンスルホニルクロリド:2,4,6-Triisopropylbenzenesulfonyl Chloride
  10. マニュエル・ヴァン・ゲメレン Manuel van Gemmeren

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP