[スポンサーリンク]

化学者のつぶやき

ビシナルジハライドテルペノイドの高効率全合成

[スポンサーリンク]

海洋天然物ビシナルジハライドテルペノイドの高効率全合成が達成された。その鍵は、いかなる構造異性体も生成することなく1種類のみを選択的に合成するジハロゲン化反応の開発であった。

 

研究背景

海洋から得られた生物活性分子にはハロゲン原子を有するものが多く発見されています(図1)。海水の構成成分である”塩(えん)”がクロロペルオキシダーゼによって酸化され、求電子剤として働くからです。求核剤は芳香環、オレフィンなど多岐に渡り、オレフィン(主にテルペノイド)がジハロゲン化された生物活性分子はおよそ240個知られています。その中でも、約7割の化合物が、塩素原子と臭素原子をビシナルに有する化合物です(図1右)。

2015-11-29_21-56-31

図1. 2014年に発見された含ハロゲン海洋天然物の一例(全114個から)[1]

最近、米国Stanford大学のBurnsらは以前彼らが開発した化学選択的、位置選択的、かつエナンチオ選択的なブロモクロロ化反応を駆使することで、これら海洋天然物ビシナルジハライドテルペノイドの高効率な不斉合成に成功したため紹介します。

“Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone”

Bucher, C.; Deans, R. M.; Burns, N. Z.;J Am Chem Soc 2015, 137, 12784. DOI: 10.1021/jacs.5b08398

 

化学選択的、位置選択的かつエナンチオ選択的なブロモクロロ化

化学合成で、テルペンをブロモクロロ化する反応を考えてみましょう。例えば、モノテルペノイドであるゲラニオールを臭素カチオンと塩素アニオンでブロモクロロ化する。その場合、二つのオレフィンの化学選択性、二つのハロゲン原子の位置選択性、さらにエナンチオマーを考慮すると、8種類の異性体が生成する可能性があります(図2)。

2015-11-29_21-57-42

図2. ゲラニオールのブロモクロロ化反応

 

一方で、Burnsらは最近、アリルアルコールのオレフィンを化学選択的、位置選択的、かつエナンチオ選択的にブロモクロロ化する方法を報告しています(図3A)[2]。化学選択性はアリルアルコールのチタン錯体への配位により、ジハロゲンの付加反応の位置選択性およびエナンチオ選択性は、不斉配位子によって制御されています(図3B)。エナンチオ選択的なブロモクロロ化反応は初めてであることに加え、位置選択性が中間体のカルボカチオン安定性に依存しないことも特筆すべき点です(図3C)。

 

2015-11-29_21-58-38

図3. (A) 化学選択的、位置選択的かつエナンチオ選択的 ブロモクロロ化 (B) 想定触媒サイクル (C)アリルアルコールのブロモクロロ化例

 

全合成への応用

本論文で著者らは、この新規ブロモクロロ化反応を用いて海洋天然物halomonの高効率不斉全合成を達成しあました(図 4)。これまでに2つのラセミ体のhalomon合成法が報告されていますが[3]、ジハロゲン化反応により多数のジアステレオマーや位置異性体が生成します。そのため、純粋な(+)-halomonを得るにはHPLCにより異性体を分離する必要があり、結果的に低収率となります。それに対して著者らは、開発したジハロゲン化反応により(+)-halomonのみを400mg以上合成することに成功しています。

 

2015-11-29_21-59-28

図4. Halomon合成法 (A) Mioskowskyら (B) Hiramaら (C) 本論文

 

さらに著者らは、同様の手法を用いることで海洋天然物plocamenoneおよびisoplocamenoneの全合成にも初めて成功しました。

2015-11-29_22-00-11

 

まとめ

開発した反応を実践的な天然物合成へと応用を行うことで、この反応の一般性の高さを示しました。海洋天然物ビシナルジハライドテルペノイドはユニークな生物活性分子群であり、この「選択的」合成法をつかった大量供給により、生物学的研究の加速が期待できます。

 

参考文献

  1. Gribble, G. W. Environ. Chem. 2015, 12, 396−405. DOI: 10.1071/EN15002
  2.  Hu, D. X.; Seidl, F. J.; Bucher, C.; Burns, N. Z. J. Am. Chem. Soc. 2015, 137, 3795−3798. DOI: 10.1021/jacs.5b01384
  3. (a) Schlama, T.; Baati, R.; Gouverneur, V.; Valleix, A.; Falck, J. R.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2085−2087. DOI: 10.1002/(SICI)1521-3773(19980817)37:15<2085::AID-ANIE2085>3.0.CO;2-J (b) Sotokawa, T.; Noda, T.; Pi, S.; Hirama, M. Angew. Chem., Int. Ed. 2000, 39, 3430−3432. DOI: 10.1002/1521-3773(20001002)39:19<3430::AID-ANIE3430>3.0.CO;2-3
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 金属原子のみでできたサンドイッチ
  2. OMCOS19に参加しよう!
  3. 超原子結晶!TCNE!インターカレーション!!!
  4. レビュー多すぎじゃね??
  5. 離れた場所で互いを認識:新たなタイプの人工塩基対の開発
  6. 常温・常圧で二酸化炭素から多孔性材料をつくる
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニタ…
  8. 実験のお供に!【富士フイルム和光純薬】の遷移金属触媒カタログ

注目情報

ピックアップ記事

  1. 野依記念物質科学研究館
  2. 【Spiber】新卒・中途採用情報
  3. ヨアヒム・ザウアー Joachim Sauer
  4. マリンス有機化学(上)-学び手の視点から-
  5. 化学的に覚醒剤を隠す薬物を摘発
  6. 切磋琢磨するアメリカの科学者たち―米国アカデミアと競争的資金の申請・審査の全貌
  7. 二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング
  8. 金属原子のみでできたサンドイッチ
  9. 機構解明が次なる一手に繋がった反応開発研究
  10. ジョーンズ酸化 Jones Oxidation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年12月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP