[スポンサーリンク]

化学者のつぶやき

ムギネ酸は土から根に鉄分を運ぶ渡し舟

新米が待ち遠しい季節になりました。ほかほかの炊きたてごはん。おかずがなくてもあら不思議。自然と食が進みます。

お米が美味しい季節なので、イネ科植物に特有の一風かわった機能を持つ物質について、お話ししたいと思います。その名はムギネ酸。名前の通り麦の根から単離された物質で、化学構造はアゼチジンと同じ含窒素四員環が特徴的です。

このムギネ酸には、根から土壌栄養分を吸収しやすく機能があります。実際、葉が黄色くなってしまうような不良土壌でリンゴやミカンのような果樹を育てても、ムギネ酸をよく分泌するイネ科植物を木と木の間に生やしておくと再緑化効果といって症状を改善させることができます。

動物でも植物でもは必須元素として知られ、数々の酵素の活性には鉄が必要不可欠です。多くの方は高校で習ってご存じのとおり、鉄イオンにはそれぞれ2価と3価の陽イオンの2形態があり、土壌と植物の間で鉄が移行する過程には複雑な関係があります。

 空気によく触れるような土壌でpHアルカリ性側にかたよると、3価の鉄が水酸化鉄として不溶化します。酸素ケイ素アルミニウムに次いで、鉄は地殻中に多く存在する元素ですが、こうなると植物は根から鉄分を吸収できなくなります。

コムギオオムギアワヒエなどのイネ科植物のうち、とくにイネはこのような様式で起こる土壌栄養分の変化に弱い植物です。イネばかりがなぜ鉄欠乏状態に陥りやすいのか。決め手はここでも、オオムギから単離されたムギネ酸です。

 

鉄欠乏耐性の秘訣はムギネ酸にあり

合成化学の観点からムギネ酸の化学構造を見ると、全合成するならばアゼチジンの四員環の部分が気になりますが、最初に報告された合成経路ではアゼチジンカルボン酸を終盤にくっつけて成功[1]したみたいです。

Unknown

ムギネ酸の化学構造

 

オオムギのようなイネ科植物は、このムギネ酸をさかんに生合成し、土壌中に分泌[5]しています。そして、ムギネ酸が土壌中にある3価の鉄イオンをはさみこんで溶かし、抱き合った状態で植物の中に吸収[3,4]されます。

このムギネ酸の生合成や細胞膜をへだてた輸送能力は、ないわけではありませんがイネではとても弱くなっています。オオムギと同じようにムギネ酸を基盤とした戦略で、イネはあまり鉄イオンを吸収できないのです[2]。

このムギネ酸、一般にはほとんどイネ科植物だけで知られています。例えば、モデル植物として知られるシロイヌナズナゲノムには、ムギネ酸の生合成酵素をコードすると思われる遺伝子がありません。イネ科植物の祖先でムギネ酸に関連した遺伝子が誕生、そのあと水田に似た環境へ進出するとともにイネ自体はこれらの遺伝子を退化させてしまったのでしょう。

 

水と土しかない場所で みんなで豊かになる方法

一方、イネ科植物に含まれるムギネ酸の前駆体であるニコチアナミンは、イネにもシロイヌナズナにもたくさん含まれています。これらは維管束を通じて、植物体の必要な場所に鉄を2価イオンの状態で運送するときに機能すると考えられています。実際、シロイヌナズナでニコチアナミンの生合成酵素を欠損した多重変異体を作出したところ、維管束付近に鉄が沈着したまま運び出せなくなり、葉の緑色色素が抜けるなど顕著な鉄欠乏症状が観察されました[6]。

Nicotianamine

ニコチアナミンの化学構造

さて、ニコチアナミンからムギネ酸までは、生合成は酵素反応でほとんど一発です(正確に言うとデオキシムギネ酸がある)。実際、オオムギから単離したムギネ酸生合成の鍵酵素を、イネに遺伝子導入したところ、アルカリ性の強い土壌でも鉄欠乏に耐性を持つようになりました[2] 。この報告が示す通り、ムギネ酸関連遺伝子は、DNAマーカーを用いた分子育種のためには格好のターゲットです。

地面の下にも、特異な生体機能と化学構造を持った天然化合物は眠っています。炊きたてごはんを口にほおばりながら、未知の可能性に思いをはせるのも、たまにはよいかもしれません。

 

 

参考論文

  1.  “Total synthesis of 2′-deoxymugineic acid, the metal chelator excreted from wheat root” Yasufumi Ohfune et al. J. Am. Chem. Soc. 1981 DOI: 10.1021/ja00399a046
  2. “Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes.” Michiko Takahashi et al. Nature Biotechnology 2001 DOI: 10.1038/88143
  3. “A speci?c transporter for iron(III)–phytosiderophore in barley roots.” Yoshiko Murata et al. Plant J. 2006 DOI: 10.1111/j.1365-313X.2006.02714.x
  4. “Mugineic Acid Derivatives as Molecular Probes for the Mechanistic Elucidation of Iron Acquisition in Barley.” Kosuke Namba et al. Angew. Chem. Int. Ed. 2010 DOI: 10.1002/anie.201004853
  5. “Phytosiderophore Efflux Transporters Are Crucial for Iron Acquisition in Graminaceous Plants.” Tomoko Nozoye et al. J. Biol. Chem. 2011 DOI: 10.1074/jbc.M110.180026
  6. “Nicotianamine Functions in the Phloem-Based Transport of Iron to Sink Organs, in Pollen Development and Pollen Tube Growth in Arabidopsis.” Mara Schuler et al. Plant Cell 2012 DOI: 10.1105/tpc.112.099077

 

関連書籍

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  2. リサーチ・アドミニストレーター (URA) という職業を知ってい…
  3. シャンパンの泡、脱気の泡
  4. 室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系
  5. 僅か3時間でヒトのテロメア長を検出!
  6. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  7. 地域の光る化学企業たち-1
  8. ゴードン会議に参加して:ボストン周辺滞在記 PartI

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポーソン・カーン反応 Pauson-Khand Reaction
  2. 文具に凝るといふことを化学者もしてみむとてするなり ⑦:「はん蔵」でラクラク捺印の巻
  3. 遠藤守信 Morinobu Endo
  4. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合・オキシインドール・遠隔不斉誘導・ビアリールカップリング
  5. 企業の研究を通して感じたこと
  6. スピノシン spinosyn
  7. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  8. 毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~
  9. 犬の「肥満治療薬」を認可=米食品医薬品局
  10. 鄧 青雲 Ching W. Tang

関連商品

注目情報

注目情報

最新記事

ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応

2017年、アルバータ大学・Dennis G. Hallらは、細胞毒性の低いボロン酸とジオール間での…

分子で作る惑星、その名もナノサターン!

2018年、東工大の豊田真司先生らによって、まるで土星を型どったような分子の合成が報告された。フラー…

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

Chem-Station Twitter

PAGE TOP