[スポンサーリンク]

化学者のつぶやき

ヒバリマイシノンの全合成

 

抗腫瘍活性が期待されるヒバリマイシノンと呼ばれる天然化合物の全合成が達成[1],[2]されました。軸不斉のある分子をどう作り上げていくのか、その合成戦略をチェックしてみたいと思います。

ヒバリマイシノンは、ある種の細菌(Microbispora属に分類される)が産生する生理活性物質です。命名は、富山県 射水市いみずし戸破ひばり)で採取された菌株から単離されたことに、由来しています。だいたい市役所のあたりが、「戸破」と呼ばれる地域で、富山県立大学からは目と鼻の先です。

GREEN2012hibari01

Google Map より 航空写真

ヒバリマイシノンには、キナーゼと呼ばれるある種のタンパク質リン酸化酵素(protein kinase)を阻害する性質があります。Src(Sarcoma)ファミリーに属するチロシンキナーゼが、ヒバリマイシノンの標的タンパク質であると考えられており、細胞内のシグナル伝達に影響を与えることで優れた抗腫瘍活性が期待されていました。

GREEN2012hibari03

PDB(Protein Data Bank)よりv-Srcタンパク質の立体構造

同位体標識および菌株変異体の実験から、ヒバリマイシノンおよびその派生物は次のような生合成経路をたどると考えられています。

GREEN2012hibari02

生合成経路では、対称なHMP-Y1から、両翼の一方だけが酸化されて生理活性を持ったヒバリノマイシノンとなり、追加の環形成を経て生理活性をほとんど失わないままHMP-P1になります。HMP-Y1およびヒバリマイシノンには軸不斉のある点が構造上の特徴です。これは中央にあるベンゼン環どうしの結合が、立体障害のため回転できないように固定されているためです。

一般に、First Synthesisの場合、なるべく早くなるべく確実にしかし予想外のことがあってもあきらめず、といったことが反応経路にもとめられます。世界初の全合成は2011年[1]に達成され、機器分析データと照合することで構造決定の正しさが確認されました。

 

続いてさらにもうひとつ

続いて2012年[2]、別の合成経路でも全合成が達成されました。こちらの報告[2]では、ヒバリマイシノンだけでなく、派生化合物のHMP-Y1やHMP-P1をも合成しています。

GREEN2012hibari04

まず、概要を確認しましょう。生合成経路と同じように、HMP-Y1からヒバリマイシノンへの変換はどうかというと、非対称化は上手くいったものの、その後が副反応や副産物のため困難だったので、いろいろ試したものの不毛だと判断し、断念したとのこと。ヒバリマイシノンからHMP-P1への変換は、弱アルカリ性pH7.5の水酸化ナトリウム・リン酸ナトリウム緩衝液で処理するだけで、近接するメチル基がとれてそのまま環形成するようで、生体内でも酵素反応によらず自発的に起きている可能性が示唆されます。軸不斉化合物どうしの変換は、加熱すると、HMP-Y1では90℃、ヒバリマイシノンでは60℃で起こるとのことで、単純な実験のわりに有意義で興味深いデータです。

また、全合成達成のハイライトとして、新規性が主張されているBenzyl Fluoride Michael – Claisen Reaction Sequenceに焦点を当ててみます。

GREEN2012hibari05

 

この操作では、収率55パーセントで、目的産物に環6つを一挙に追加することができました。成功のポイントは次のように考察されています。

・電気陰性なフッ素原子がビアリールジアニオンを安定させた。

・フッ素原子は原子半径が小さく一段階目のMichael付加反応の立体障害になりにくかった。

・炭素フッ素間共有結合(C-F)の強度のおかげで想定されうる別の副反応がほとんど起きなかった。

・炭素フッ素間共有結合(C-F)の強度にも関わらずトリフルオロエタノール存在下で脱離反応しさらに芳香環を構築できた。

 

2012年の報告[2]では全合成の達成というよりも、その周辺開拓で高い評価を受けたようです。こうして複数の経路で、ヒバリマイシンのアグリコンであるヒバリマイシノンは、全合成が達成されました。配糖体であるヒバリマイシン自体の全合成は、事が順当に運んで時節が来れば、いつかきっと報告されるだろう、とのことです。

 

参考文献

[1] “The ?rst total synthesis of hibarimicinone, a potent v-Src tyrosine kinase inhibitor.” Kuniaki Tatsuta et al. Tetrahedron Lett. 2011 DOI: 10.1016/j.tetlet.2011.11.062

[2] “Total Syntheses of HMP-Y1, Hibarimicinone, and HMP-P1” Brian B. Liau et al. J. Am. Chem. Soc. 2012 DOI: 10.1021/ja307207q

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. このホウ素、まるで窒素ー酸を塩基に変えるー
  2. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  3. マイルの寄付:東北地方太平洋沖地震
  4. 新たな特殊ペプチド合成を切り拓く「コドンボックスの人工分割」
  5. Bayer Material Scienceの分離独立が語るもの…
  6. 2007年度ノーベル医学・生理学賞決定!
  7. 化学にインスパイアされたジュエリー
  8. 汝ペーハーと読むなかれ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. コールマン試薬 Collman’s Reagent
  2. 化学系研究室ホームページ作成ガイド
  3. 生物指向型合成 Biology-Oriented Synthesis
  4. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Ganem Oxidation
  5. 量子化学計算を駆使した不斉ホスフィン配位子設計から導かれる新たな不斉ホウ素化反応
  6. 池田 富樹 Tomiki Ikeda
  7. 極小の「分子ペンチ」開発
  8. バールエンガ試薬 Barluenga’s Reagent
  9. Dead Endを回避せよ!「全合成・極限からの一手」シリーズ
  10. アジリジンが拓く短工程有機合成

関連商品

注目情報

注目情報

最新記事

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

Chem-Station Twitter

PAGE TOP