[スポンサーリンク]

化学者のつぶやき

ヒバリマイシノンの全合成

[スポンサーリンク]

 

抗腫瘍活性が期待されるヒバリマイシノンと呼ばれる天然化合物の全合成が達成[1],[2]されました。軸不斉のある分子をどう作り上げていくのか、その合成戦略をチェックしてみたいと思います。

ヒバリマイシノンは、ある種の細菌(Microbispora属に分類される)が産生する生理活性物質です。命名は、富山県 射水市いみずし戸破ひばり)で採取された菌株から単離されたことに、由来しています。だいたい市役所のあたりが、「戸破」と呼ばれる地域で、富山県立大学からは目と鼻の先です。

GREEN2012hibari01

Google Map より 航空写真

ヒバリマイシノンには、キナーゼと呼ばれるある種のタンパク質リン酸化酵素(protein kinase)を阻害する性質があります。Src(Sarcoma)ファミリーに属するチロシンキナーゼが、ヒバリマイシノンの標的タンパク質であると考えられており、細胞内のシグナル伝達に影響を与えることで優れた抗腫瘍活性が期待されていました。

GREEN2012hibari03

PDB(Protein Data Bank)よりv-Srcタンパク質の立体構造

同位体標識および菌株変異体の実験から、ヒバリマイシノンおよびその派生物は次のような生合成経路をたどると考えられています。

GREEN2012hibari02

生合成経路では、対称なHMP-Y1から、両翼の一方だけが酸化されて生理活性を持ったヒバリノマイシノンとなり、追加の環形成を経て生理活性をほとんど失わないままHMP-P1になります。HMP-Y1およびヒバリマイシノンには軸不斉のある点が構造上の特徴です。これは中央にあるベンゼン環どうしの結合が、立体障害のため回転できないように固定されているためです。

一般に、First Synthesisの場合、なるべく早くなるべく確実にしかし予想外のことがあってもあきらめず、といったことが反応経路にもとめられます。世界初の全合成は2011年[1]に達成され、機器分析データと照合することで構造決定の正しさが確認されました。

 

続いてさらにもうひとつ

続いて2012年[2]、別の合成経路でも全合成が達成されました。こちらの報告[2]では、ヒバリマイシノンだけでなく、派生化合物のHMP-Y1やHMP-P1をも合成しています。

GREEN2012hibari04

まず、概要を確認しましょう。生合成経路と同じように、HMP-Y1からヒバリマイシノンへの変換はどうかというと、非対称化は上手くいったものの、その後が副反応や副産物のため困難だったので、いろいろ試したものの不毛だと判断し、断念したとのこと。ヒバリマイシノンからHMP-P1への変換は、弱アルカリ性pH7.5の水酸化ナトリウム・リン酸ナトリウム緩衝液で処理するだけで、近接するメチル基がとれてそのまま環形成するようで、生体内でも酵素反応によらず自発的に起きている可能性が示唆されます。軸不斉化合物どうしの変換は、加熱すると、HMP-Y1では90℃、ヒバリマイシノンでは60℃で起こるとのことで、単純な実験のわりに有意義で興味深いデータです。

また、全合成達成のハイライトとして、新規性が主張されているBenzyl Fluoride Michael – Claisen Reaction Sequenceに焦点を当ててみます。

GREEN2012hibari05

 

この操作では、収率55パーセントで、目的産物に環6つを一挙に追加することができました。成功のポイントは次のように考察されています。

・電気陰性なフッ素原子がビアリールジアニオンを安定させた。

・フッ素原子は原子半径が小さく一段階目のMichael付加反応の立体障害になりにくかった。

・炭素フッ素間共有結合(C-F)の強度のおかげで想定されうる別の副反応がほとんど起きなかった。

・炭素フッ素間共有結合(C-F)の強度にも関わらずトリフルオロエタノール存在下で脱離反応しさらに芳香環を構築できた。

 

2012年の報告[2]では全合成の達成というよりも、その周辺開拓で高い評価を受けたようです。こうして複数の経路で、ヒバリマイシンのアグリコンであるヒバリマイシノンは、全合成が達成されました。配糖体であるヒバリマイシン自体の全合成は、事が順当に運んで時節が来れば、いつかきっと報告されるだろう、とのことです。

 

参考文献

[1] “The ?rst total synthesis of hibarimicinone, a potent v-Src tyrosine kinase inhibitor.” Kuniaki Tatsuta et al. Tetrahedron Lett. 2011 DOI: 10.1016/j.tetlet.2011.11.062

[2] “Total Syntheses of HMP-Y1, Hibarimicinone, and HMP-P1” Brian B. Liau et al. J. Am. Chem. Soc. 2012 DOI: 10.1021/ja307207q

 

関連書籍

 

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属…
  2. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  3. タンパクの骨格を改変する、新たなスプライシング機構の発見
  4. 徒然なるままにセンター試験を解いてみた
  5. ケミストリ・ソングス【Part1】
  6. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  7. シクロヘキサンの片面を全てフッ素化する
  8. 【24卒 化学業界就活スタート講座 5月15日(日)Zoomウェ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第10回ケムステVシンポ「天然物フィロソフィ」を開催します
  2. ハンチュ エステルを用いる水素移動還元 Transfer Hydrogenation with Hantzsch Ester
  3. 細胞を模倣したコンピューター制御可能なリアクター
  4. NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート
  5. マイゼンハイマー転位 Meisenheimer Rearrangement
  6. ハンスディーカー反応 Hunsdiecker Reaction
  7. 重いキノン
  8. ライオン、フッ素の虫歯予防効果を高める新成分を発見
  9. 第33回 新たな手法をもとに複雑化合物の合成に切り込む―Steve Marsden教授
  10. 三菱化学が有機太陽電池事業に参入

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

マテリアルズ・インフォマティクスにおけるデータ0からの初期データ戦略

開催日:2024/06/05 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

ホウ素の力でイオンを見る!長波長光での観察を可能とするアニオンセンサーの開発

第 615回のスポットライトリサーチは、大阪大学大学院 工学研究科応用化学専攻 南方…

マテリアルズ・インフォマティクスと持続可能性: 環境課題の解決策

開催日:2024/05/29 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Christoper Uyeda教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催された「…

有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学のイノベーション」特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年5月号がオンライン公開されています。…

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP