[スポンサーリンク]

化学者のつぶやき

シャンパンの泡、脱気の泡

世間はすっかりクリスマスですね。イヴにはシャンパンで乾杯、という方もいらっしゃるでしょうか。フルートグラスを起ち上る泡の列はとても華やかですが、残念ながら筆者にはまだ縁遠い世界のようです。

一方、化学実験で泡といえば……? 筆者などは「脱気」操作を思い出します。これはつい最近、フラスコが割れないかビクビクしながら凍結脱気をした影響も大きいですが(苦笑)。

シャンパンの泡と脱気の泡、華やかさはまるで違いますが、両者はご存知「ヘンリーの法則」で結ばれています。脱気は実験の超基本操作ですが、筆者自身の勉強も兼ねて、ここにまとめておきます。学部生の方のお役に立てば幸いです!

シャンパンの泡の正体がアルコール発酵で生じた二酸化炭素であることはご存じの方も多いと思います。開栓前のシャンパンボトルは内圧が約6気圧にもなるということで、シャンパン中には約12 g/L(!)もの二酸化炭素が溶けているそうです。針金を外して放置しているとコルクが飛んだりしますが、それだけの圧が掛かっているのなら納得です。

 脱気が必要なケース

一方、シャンパンに二酸化炭素が溶けているように、実験で使う有機溶媒にも様々な気体が溶けています。

特に酸素は最もありふれた酸化剤であり、

・有機金属試薬を用いる反応
・ラジカル反応
・チオールやホスフィンなど酸化されやすい化合物を含む反応

などの実験前には「脱気」という前処理をし、酸素を追い出す必要が出てきます。

脱気にもいろんなやり方があるようですが、筆者がよくやるのは「凍結脱気」と「アルゴンバブリング」の2つです。

しっかり脱気したいときは凍結脱気。一応やるか、程度の時はアルゴンバブリング。

 

 凍結脱気

凍結脱気の原理はわかりやすく、接する気相を真空に近くすることで酸素を溶けていられなくする、というものです。手順は以下の通り。 

0. コックをつけたフラスコに溶媒を(多くて3分の1)入れ、コックを閉める
1. 液体窒素などにつけて溶媒を凍らせる
2. コックを真空ラインにつなぎ、フラスコ内を減圧する
→溶媒は凍っているのでほとんど蒸発しない
3. コックを閉め、溶媒を溶かす
→溶媒中に溶けていた酸素などが出て行く

 凍結脱気を英語では「Freeze-Pump-Thaw (FPT) cycling」というようですが、この手順そのままですね。1から3を普通は3回繰り返し、最後にアルゴン(or窒素)を充填して終了です。

 

こう書くと何も難しいことのない操作ですが、個人的には溶媒を溶かすのがあまり得意ではないです。というのも、水以外の大抵の溶媒は固体より液体のほうが体積が大きいので、下手に溶かすとフラスコが割れてしまう……!
水に放り込まれた氷がピキピキ音をたてるのを聞いたことがあると思いますが、凍結脱気をしているときにピシッと音がすると、フラスコが割れる気がして毎度冷や汗をかきます。

 

アルゴンバブリング

そんな怖い思いをして厳密に脱気しなくても良いときは、アルゴンバブリングで済ませます。アルゴンなどの不活性ガスを吹き込みつつ30分程度撹拌するだけなので、こちらは本当に簡単です。

原理はやっぱりヘンリーの法則を利用したもので、気相中の「分圧」に比例するという点が効いてきます。つまり、液体に吹き込まれたアルゴンの泡内は酸素分圧がゼロなので、溶媒から酸素を吸い取りつつ泡が昇っていくという仕掛けです。

何しろ放置しておけばよいので簡易脱気ならこれに限るのですが、30分程度かかるため、溶媒の揮発や空気中の水分の混入には注意が必要です。

 

ところで、こうした基本操作は各ラボ毎に独特の方法がある気がするのですが、いかがでしょうか。

例えば凍らせた溶媒を溶かすとき、筆者のいるラボではドライヤーを使うのが主流なのですが、初めて凍結脱気をやったときは「溶かすときはゆっくり」と勘違いしていたのでそれは大変でした(苦笑)

 

実際のコツは、

・底の方から急いで溶かす
・溶媒はナスフラスコの断面積が狭くなるところより上には入れない
・凍らせるときはフラスコの壁面に沿うように凍らせる

辺りのようですが、筆者もまだまだ勉強中なので良い方法があったらぜひ教えてください!

 関連リンク

 Degasification – Wikipedia

 ヘンリーの法則 – Wikipedia

関連書籍

The following two tabs change content below.
arrow

arrow

大学で有機金属触媒について研究している学生です。 好きなものはバスケとお酒、よくしゃべりよく聞きよく笑うこと。 日々の研究生活で見、聞き、感じ、考えたことを発信していきます

関連記事

  1. Pixiv発!秀作化学イラスト集【Part 2】
  2. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  3. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  4. Scifinderが実験項情報閲覧可能に!
  5. ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~
  6. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  7. シリンドロシクロファン生合成経路の解明
  8. ケムステ新コンテンツ「化学地球儀」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. サイエンスアゴラ参加辞退のお知らせ
  2. 有機薄膜太陽電池の”最新”開発動向
  3. ジメチル(2-ピリジル)シリル化合物
  4. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  5. 「さくら、さくら」劇場鑑賞券プレゼント結果発表!
  6. デミヤノフ転位 Demjanov Rearrangement
  7. 米デュポンの第2・四半期決算は予想下回る、エネルギー費用高騰が打撃
  8. EUのナノマテリアル監視機関が公式サイトをオープン
  9. 市川アリルシアナート転位 Ichikawa Allylcyanate Rearrangement
  10. ネオジム磁石の調達、製造技術とビジネス戦略【終了】

関連商品

注目情報

注目情報

最新記事

元素手帳 2018

今年も残すところあと1ヶ月半となってきました。来年に向けて、そろそろアレを購入される方もいら…

シクロペンタジエニル錯体の合成に一筋の光か?

β-炭素脱離を用いるシクロペンタジエニル(Cp)錯体の新たな調製法が報告された。本法により反応系中で…

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

Chem-Station Twitter

PAGE TOP