[スポンサーリンク]

一般的な話題

2010年ノーベル化学賞予想―トムソン・ロイター版

前回までに海外版ケムステ版と称してノーベル化学賞の予測を紹介してきました。まったくいろいろな見方ができる賞の一つであるかと思います。そして毎年恒例でもあります、トムソン・ロイター社選定によるノーベル賞有力候補者が、このたび発表されました!化学賞候補として今年はなんと日本人の名が! さてさて予想に上がったのはどんな人たちなのでしょうか?

【多孔性金属-有機骨格の合成法および機能化学の開拓】

kitagawa_yaghi.jpg
北川 進 (京都大学)
オマー・ヤギー (米カリフォルニア大学ロサンゼルス校)

両教授は金属-有機構造体(Metal-Organic Framework: MOF)と呼ばれる材料の開発に貢献した化学者です。

MOFは適切な有機配位子と、金属クラスターを重合させてできる結晶性多孔性材料です。
金属と有機物のハイブリッドなので軽量であり、有機配位子をチューニングするだけで孔の機能を精密調整できるのが他に無い特徴として挙げられます。

MOFの応用例はさまざまに知られていますが、特にガス貯蔵材料としての応用が有望視されています。たとえば水素はクリーンエネルギーとして重要なガスですが、それを高密度で貯蔵し、安全に運搬することは極めて難しいです。MOFは軽量性に富み高い比表面積を持つため、水素貯蔵材料としても抜群の性能を示すとされています。

b802256a-ga.gif

現在爆発的な成長と研究競争を見せている流行分野の一つであり、本分野のパイオニアたる両教授の論文引用数は、どちらも破格の数値となっています。とはいえ実用化についてはもう少し研究が必要そうな印象で、実際にノーベル賞を受賞するのはまだ先・・・でしょうか。

【DNAマイクロアレイの発明と応用】

Patrick_Brown_1-e1413270008369
パトリック・ブラウン(米スタンフォード大・ハワード・ヒューズ医科研究所)

DNAマイクロアレイとは数万~数十万のDNA断片を基板上に配列させたものであり、遺伝子発現を迅速かつ網羅的に調べる目的で用いられます。

brown_01.jpg

この技術を使えば、例えば「薬物投与後や発病後にどの遺伝子がたくさん発現しているか?」などといったことを、きわめて迅速に解析することが可能です。現在では疾病診断や、研究ツールとして大変有効に使われています。

ブラウン教授はこの技術の発明者として知られています。

【DNA複製阻害インターカレーター+生物無機化学】

lippard.jpg
ステフェン・リパード (米マサチューセッツ工科大)

リパード教授は生体分子と金属の境界領域、すなわち生物無機化学の領域で活躍する研究者のひとりで、生体高分子と金属の相互作用・その解析を主軸テーマとして研究を進めています。

彼らのグループはメタロインターカレーター、すなわちDNA塩基対の間に挿入し、二重鎖を複製阻害する白金錯体を世界で初めて開発しました。

これはシスプラチンに代表される白金系抗癌剤の作用機序の解明、ひいてはより高活性な抗癌剤を開発していくための基礎的知見へと直結する研究成果となりました。

cisplatin_1.gif

また他にもメタンモノオキシゲナーゼ(MMO)などの金属含有酵素の構造解析や、NO蛍光センサーの開発などについても、世界的な業績をあげておられます。

今回のトムソン予想では、将来のノーベル医学賞はおそらくガチたる山中伸弥教授(京都大学)、経済学賞の清滝信宏教授(米プリンストン大)もチョイスされ、化学賞以外からも日本人が多く選ばれました。日本のサイエンスのレベルの高さが端的に伺える、喜ばしい結果だったのではないでしょうか。

今年のノーベル化学賞は、10月6日に発表です。楽しみに待ちましょう!

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アメリカで Ph.D. を取る –奨学金を申請するの巻–
  2. 世界最高の活性を示すアンモニア合成触媒の開発
  3. アルカリ土類金属触媒の最前線
  4. 海洋天然物パラウアミンの全合成
  5. 表裏二面性をもつ「ヤヌス型分子」の合成
  6. Google翻訳の精度が飛躍的に向上!~その活用法を考える~
  7. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möl…
  8. 2017年始めに100年前を振り返ってみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウォルター・コーン Walter Kohn
  2. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)
  3. ESIPTを2回起こすESDPT分子
  4. ギ酸 (formic acid)
  5. スタニルリチウム調製の新手法
  6. ピナー反応 Pinner Reaction
  7. メルク、途上国でエイズ抑制剤を20%値下げ
  8. 核のごみを貴金属に 現代の錬金術、実験へ
  9. フォルハルト・エルドマン環化 Volhard-Erdmann Cyclization
  10. ヴィルスマイヤー・ハック反応 Vilsmeier-Haack Reaction

関連商品

注目情報

注目情報

最新記事

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP