[スポンサーリンク]

化学者のつぶやき

なんと!アルカリ金属触媒で進む直接シリル化反応

[スポンサーリンク]

 

ご存知のようにヘテロ芳香環を有する医薬品や有機材料は数多く存在します。これらに対するシリル基(R3Si-)の導入(シリル化反応)はその性質を変換させるだけでなく、様々な官能基へと変換可能なプラットホームとなるため合成的有用性を秘めています。

ヘテロ芳香環のシリル化反応は、ヘテロ芳香環を有機金属反応剤に変換した後に、求電子的なシリル化剤([SI]-LG)を作用させる方法が最も一般的でした(図1上)。

しかしながらこの手法では、自然発火性のリチウム反応剤(R–Li)やグリニャール反応剤(R–MgX)を化学量論量用いる必要があります。また生じた有機金属反応剤が強い求核剤となるため基質適用範囲が限られていました。

近年では、イリジウムやロジウムなどの遷移金属触媒を用いた触媒的炭素–水素結合の直接C–Hシリル化反応が開発されていますが、高価な遷移金属触媒をもちいるため、大スケールの合成には適用しづらいといった難点があります(図1下)[1]

 

図1 従来のシリル化反応

図1 従来のシリル化反応

 

この2つの代表的なシリル化反応に対して、最近、Nature誌にカリフォルニア工科大学のStoltzGrubbsらのグループらが“第三”のシリル化反応を報告しました。

 

“Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst”

Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80–84.

DOI:10.1038/nature14126

 

今回報告された反応は、触媒的かつヘテロ芳香環のC–H結合を[SI]–Hを用いて直接的にシリル化します。触媒としてはなんとアルカリ金属塩基であるカリウムtert-ブトキシド(KOt-Bu)を使うとのこと。KOt-Buは一般的に強塩基として用いられますが、それを触媒とした反応とはいったいどのようなものでしょうか。それでは簡単に見てみましょう。

副反応からはじまった研究

この反応開発のきっかけとなったのは2013年にGrubbsが開発したアリールエーテルの還元的開裂反応です[2]。ジベンゾフランに対して、トリエチルシラン(3〜5当量)と当量のKOt-Buを加え、加熱することでエーテル結合(炭素–酸素結合)の切断が起こりフェノール誘導体が得られます(図2)。

その反応の副生成物として、思わぬ化合物が得られたのです。この副生成物は、電子豊富な芳香環のC–H結合を直接シリル化しされた化合物です。つまり、KOt-Buを触媒量にして副生成物の収率を向上させることが可能となれば、触媒的なC–H結合シリル化が実現できます。そこで、芳香環としては電子豊富なヘテロ芳香環を選び、反応の最適化を図りました。

 

図2 開発のきっかけとなった炭素–酸素結合開裂反応

図2 開発のきっかけとなったアリールエーテルの炭素–酸素結合開裂反応

 

新規C-Hシリル化反応と反応機構

反応最適化の結果、触媒量(20 mol%)のKOt-Buとトリエチルシラン(3当量)を用いることでインドールのC2位選択的なC–Hシリル化を達成しています。それ以外にも40種以上のヘテロ芳香環のC–Hシリル化を試しており、比較的電子豊富なヘテロ芳香環ならばかなり有用な反応であるといえます。さらにGloriusらの手法[3]を用いてこの反応における官能基耐性を調査しています。これらの詳細については論文をご覧ください。

しかし気になるのは反応機構です。一体どのようにしてこの反応は進行しているのでしょうか。

著者らははじめに異なるヘテロ芳香環を用いた競合実験を行っています(図3a)。電子豊富なヘテロ芳香環であるほど反応性は下がっているため、求電子的置換反応とは相補的な反応性であると示唆されます。

さらにフリーラジカルを有するTEMPOなどを添加することで反応は進行しなくなることから、ラジカルが生成していることが考えられます(図3b)。しかしながらピリジンに対しては反応が進行しないため、ヘテロ芳香環へラジカル付加する反応(ミニスキ反応)とは異なるタイプの反応であることが示唆されます。

また、添加剤としてエポキシドを加えても全く反応に影響を与えなかったためシリルアニオン種(R3Si–K)が生じる機構も考えにくい結果となりました(図3c)。

 

図3 反応機構解明に向けて

図3 反応機構解明に向けた各種実験

 

これらの結果から、本反応はこれまで知られている炭素–水素結合官能基化反応とは全く異なる機構で反応が進行していることが示唆されます。

 

大量合成や合成最終段階にも使える

さて、未知の反応機構で進行するこの反応はどれほどの有用性があるのでしょうか。著者らは様々な応用を試みていますが、その一部を紹介します。

この反応は100 gスケールで行うことが可能であり、濾過と蒸留を行うことで簡便かつ大量にシリル化体を得ています(図4上)。

また、抗ヒスタミン剤であるthenalidineや抗血小板薬であるticlopidineの合成最終段階での誘導化も可能としています(図4下)。

 

図4 合成的有用性

図4 合成的有用性

 

合成の初期段階においても最終段階においてもこの反応を用いることができるため、幅広い用途があることがわかります。この他の応用についてもぜひ論文に目を通してみてください。

今回の報告では反応機構の解明までは達成されませんでしたので、今後詳細な検討により明らかとなることに期待したいと思います。

 

参考文献

  1. (a)Cheng, C.; Hartwig, J. F. Science 2014, 343, 853-857. DOI:10.1126/science.1248042 (b)Lu, B.; Falck, J. R. Angew. Chem. Int. Ed. 2008, 47, 7508–7510. DOI:10.1002/anie.200802456
  2. Fedorov, A.; Toutov, A. A.; Swisher, N. A.; Grubbs, R. H. Chem. Sci. 2013, 4, 1640–1645. DOI:10.1039/c3sc22256j
  3. Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597–601. DOI:10.1038/NCHEM.1669

 

関連書籍

[amazonjs asin=”3319070185″ locale=”JP” title=”Metal Free C-H Functionalization of Aromatics: Nucleophilic Displacement of Hydrogen (Topics in Heterocyclic Chemistry)”]

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. comparing with (to)の使い方
  2. シリルエノールエーテルのβ位を選択的に官能基化する
  3. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  4. ジャーナル編集ポリシーデータベース「Transpose」
  5. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  6. 強塩基条件下でビニルカチオン形成により5員環をつくる
  7. (+)-sieboldineの全合成
  8. 有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮…

注目情報

ピックアップ記事

  1. 二酸化炭素をメタノールに変換する有機分子触媒
  2. アレノフィルを用いるアレーンオキシドとオキセピンの合成
  3. 京都府福知山市消防本部にて化学消防ポンプ車の運用開始 ~消火のケミストリー~
  4. 混ぜるだけで簡単に作製でき、傷が素早く自己修復する透明防曇皮膜
  5. 1,3-ジヨード-5,5-ジメチルヒダントイン:1,3-Diiodo-5,5-dimethylhydantoin
  6. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  7. Nature Reviews Chemistry創刊!
  8. 福山クロスカップリング Fukuyama Cross Coupling
  9. 非選択性茎葉処理除草剤の『ザクサ液剤』を登録申請
  10. 村橋 俊一 Shun-Ichi Murahashi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー