[スポンサーリンク]

化学者のつぶやき

ハプロフィチンの全合成

[スポンサーリンク]

Total Synthesis of (+)-Haplophytine
Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. Ed. 2009, Early View. doi: 10.1002/anie.200902192

 

(+)-ハプロフィチンはメキシコ産の植物Haplophyton cimicidumの葉っぱに含まれる、駆虫効果を示すアルカロイドです。 このたび東京大学・福山教授および東北大・徳山教授らによって、世界初の全合成が報告されました。

この化合物自体は1952年に単離されていますが、全合成が達成されたのは57年経っての本報告が初めてです。

事実、高度な窒素官能基化・多数の不斉点(うち3つは四級炭素)をもつCrazy Compoundであり、最近の全合成例の中でも、相当な高難度化合物の一つだと思われます。

 

ハプロフィチンの部分構造でもある天然物アスピドフィチンは、福山グループによって2003年に全合成が達成されています[1]。大まかには、以下のようなフラグメントに分けて取り組む逆合成戦略を取っています。彼らが開発したインドール合成法、および大環状アミン合成法を効果的に用いた収束的合成となっています。
haplophytine_2.gif
彼らは、この研究成果をベースに、以下の様に大まかに3つのパーツをアセンブルさせる逆合成ルートに従って、ハプロフィチンの全合成を達成しています。

 
haplophytine_3.gif
左パートはインドールを基本母核とする四環性化合物の酸化的転位で合成できると考えられます。が、紙の上ほど実際にはスムーズに行かず、下の例[2]のようにちょっとした保護基の違いで転位生成物が変わってきたりなど、この部分を作るだけでも相応の苦労があったようです。
haplophytine_4.gif

 

また、上記逆合成を眺めれば、中央インドール部の切り方が、アスピドフィチン全合成の場合と全く異なっていることが分かります。2,3-ジメトキシアニリン置換化合物を酸化的転位のモデル化合物に用いているのですが、それを引き続き使用して、合成を完了しているようです。
haplophytine_6.gif

CoreyNicolaouといった大物との競争のまっただ中にあった化合物ということですので、おそらく迅速に作るべく、モデル発の化合物を使う選択を取ったのでしょう。しかしそれはそれで、右フラグメントの合成法を再び確立しなくてはなりません。アスピドフィチンのインドール左フラグメントをくっつけて進める戦略は、やはり難易度が高すぎたのでしょうか。
トレードオフの絡むこの辺りの選択が、競争に勝つクリティカルポイントになってくるかも知れないわけですから、この意志決定こそは敬服すべきものなのでしょう。

これ以外の合成スキームと検討の詳細を逐一記すと膨大な量になってしまうので、詳細はここでは述べません。原論文(ACIE)と、TotallySynthetic.comでの紹介記事などを参照していただければ幸いです。いずれそのうちFull Paperにまとめられることでしょう。

長年の研究を結実させての達成、本当にお疲れ様でした!

 

関連文献

[1] (a) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 1891. doi:10.1021/ol034445e (b) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Tetrahedron 2003, 59, 8571. doi:10.1016/j.tet.2003.09.005 (c) Tokuyama, H. YAKUGAKU ZASSI 2003, 123, 1007. doi:10.1248/yakushi.123.1007

[2] (a) Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Synlett 2007, 3137. doi:10.1055/s-2007-990911??

 

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. プロテオミクス現場の小話(1)前処理環境のご紹介
  2. ご注文は海外大学院ですか?〜渡航編〜
  3. 製薬会社のテレビCMがステキです
  4. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  5. 一流科学者たちの経済的出自とその考察
  6. 抽出精製型AJIPHASE法の開発
  7. この窒素、まるでホウ素~ルイス酸性窒素化合物~
  8. シグマアルドリッチ器具・消耗品大特価キャンペーン【2018年3月…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 大気中のメタン量、横ばいに/温暖化防止に朗報か
  2. ユニバーサル・フェーズセパレーター発売
  3. レスベラトロール /resveratrol
  4. 分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)
  5. 長期海外出張のお役立ちアイテム
  6. 日本人化学者による卓越した化学研究
  7. MNBA脱水縮合剤
  8. シュタウディンガー ケテン環化付加 Staudinger Ketene Cycloaddition
  9. ビス(トリ-o-トリルホスフィン)パラジウム(II) ジクロリド:Bis(tri-o-tolylphosphine)palladium(II) Dichloride
  10. α‐リポ酸の脂肪蓄積抑制作用を高める効果を実証

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

Chem-Station Twitter

PAGE TOP