[スポンサーリンク]

化学者のつぶやき

ハプロフィチンの全合成

Total Synthesis of (+)-Haplophytine
Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. Ed. 2009, Early View. doi: 10.1002/anie.200902192

 

(+)-ハプロフィチンはメキシコ産の植物Haplophyton cimicidumの葉っぱに含まれる、駆虫効果を示すアルカロイドです。 このたび東京大学・福山教授および東北大・徳山教授らによって、世界初の全合成が報告されました。

この化合物自体は1952年に単離されていますが、全合成が達成されたのは57年経っての本報告が初めてです。

事実、高度な窒素官能基化・多数の不斉点(うち3つは四級炭素)をもつCrazy Compoundであり、最近の全合成例の中でも、相当な高難度化合物の一つだと思われます。

 

ハプロフィチンの部分構造でもある天然物アスピドフィチンは、福山グループによって2003年に全合成が達成されています[1]。大まかには、以下のようなフラグメントに分けて取り組む逆合成戦略を取っています。彼らが開発したインドール合成法、および大環状アミン合成法を効果的に用いた収束的合成となっています。
haplophytine_2.gif
彼らは、この研究成果をベースに、以下の様に大まかに3つのパーツをアセンブルさせる逆合成ルートに従って、ハプロフィチンの全合成を達成しています。

 
haplophytine_3.gif
左パートはインドールを基本母核とする四環性化合物の酸化的転位で合成できると考えられます。が、紙の上ほど実際にはスムーズに行かず、下の例[2]のようにちょっとした保護基の違いで転位生成物が変わってきたりなど、この部分を作るだけでも相応の苦労があったようです。
haplophytine_4.gif

 

また、上記逆合成を眺めれば、中央インドール部の切り方が、アスピドフィチン全合成の場合と全く異なっていることが分かります。2,3-ジメトキシアニリン置換化合物を酸化的転位のモデル化合物に用いているのですが、それを引き続き使用して、合成を完了しているようです。
haplophytine_6.gif

CoreyNicolaouといった大物との競争のまっただ中にあった化合物ということですので、おそらく迅速に作るべく、モデル発の化合物を使う選択を取ったのでしょう。しかしそれはそれで、右フラグメントの合成法を再び確立しなくてはなりません。アスピドフィチンのインドール左フラグメントをくっつけて進める戦略は、やはり難易度が高すぎたのでしょうか。
トレードオフの絡むこの辺りの選択が、競争に勝つクリティカルポイントになってくるかも知れないわけですから、この意志決定こそは敬服すべきものなのでしょう。

これ以外の合成スキームと検討の詳細を逐一記すと膨大な量になってしまうので、詳細はここでは述べません。原論文(ACIE)と、TotallySynthetic.comでの紹介記事などを参照していただければ幸いです。いずれそのうちFull Paperにまとめられることでしょう。

長年の研究を結実させての達成、本当にお疲れ様でした!

 

関連文献

[1] (a) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Org. Lett. 2003, 5, 1891. doi:10.1021/ol034445e (b) Sumi, S.; Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Tetrahedron 2003, 59, 8571. doi:10.1016/j.tet.2003.09.005 (c) Tokuyama, H. YAKUGAKU ZASSI 2003, 123, 1007. doi:10.1248/yakushi.123.1007

[2] (a) Matsumoto, K.; Tokuyama, H.; Fukuyama, T. Synlett 2007, 3137. doi:10.1055/s-2007-990911??

 

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 付設展示会に行こう!ー和光純薬編ー
  2. JSRとはどんな会社?-1
  3. 物凄く狭い場所での化学
  4. 表裏二面性をもつ「ヤヌス型分子」の合成
  5. ケージ内で反応を進行させる超分子不斉触媒
  6. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  7. 不活性アルケンの分子間[2+2]環化付加反応
  8. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 生物活性物質の化学―有機合成の考え方を学ぶ
  2. 芳香環のハロゲン化 Halogenation of Aromatic Ring
  3. オープンアクセスジャーナルの光と影
  4. 農工大で爆発事故発生―だが毎度のフォローアップは適切か?
  5. ジムロート転位 (ANRORC 型) Dimroth Rearrangement via An ANRORC Mechanism
  6. 炭酸ビス(ペンタフルオロフェニル) : Bis(pentafluorophenyl) Carbonate
  7. メーヤワイン試薬 Meerwein Reagent
  8. 仏サノフィ・アベンティス、第2・四半期は6.5%増収
  9. スイス医薬大手のロシュ、「タミフル」の生産能力を増強へ
  10. ヒアリの毒素を正しく知ろう

関連商品

注目情報

注目情報

最新記事

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

PAGE TOP