[スポンサーリンク]

一般的な話題

細胞の中を旅する小分子|第一回

[スポンサーリンク]

「size (大きさ)」は、物質の違いを視覚的に比較する最も容易なパラメーターの1つです。しかし、我々は、この大きさというパラメーターを軽視する傾向があるのではないでしょうか。私もある映像をみるまでは、そんな一人でした。

 

銀河系から原子核まで

Powers of Ten」という1968年に教育映画として発表されたもので、1977年のカラー化された映像をご存知でしょうか。YouTubeでアップロードされていましたので下記に示します(DVDも書籍も購入可)。作品は9分程度の短いものですので、機会があれば昼飯を食べながらでも一度見ていただければと思います。

 

シカゴの湖畔でピクニックをする二人の男女の映像から作品が始まります。1m x 1mの画面から始まり、徐々に上空に上がっていき、十秒後には10m x 10mの範囲の映像となります。次の10秒で100m x 100mとなり、どんどんその範囲は連続的に拡大し1024m x 1024mまで到達し、銀河団が星のように見える所で停止します。その後2秒ごとに範囲が同様に狭くなり、もとの人の1m x 1mの映像に戻ります。

すると、今度は逆に、10秒間で0.1mx0.1mの世界に次の10秒間で0.01mx0.01mの世界に入っていき、細胞の世界から、タンパク質の世界、そして原子の世界から最後に原子核の世界に辿り着いて(10-16m x 10-16m)映像が終わります。

 

創薬をサイズの視点で考える

創薬をしていく上で、具体的に、化合物の大きさ(size)や形(shape)、物理化学的性質、エネルギー等のパラメーターを比較し、仮説を立てることは重要であると考えています。だいたいの感覚や思い込みで仮説立てることは、むやみやたらに当てずっぽうで鉄砲を打っている行為に等しいものです。ただし、思いつきは大事にして下さい。思いついた化合物は、過去の自分の経験の産物です。

あるインフルエンザ薬を作られた方の言葉で忘れられない言葉があります。それは

 

「思いついたらやってみろ。2−3個作ってダメなら引き返せ。深追いはするな。」

「SAR上どうしてもやる必要がある化合物は何が何でも合成しろ。」

 

というものです。どちらも、「過去の経験と積み上げられた実験結果に基づく仮説の大切さ」と「自分の仮説にしがみつかず実験の結果を尊重しろ」ということも教えてくれています。

少し話が大きくなりましたが、本稿では、仮説を立てる際にもっともシンプルなパラメーターである大きさ(size)の視点から、細胞外から細胞内に小分子が入って行く過程をまとめてみたいと思います。3回に分けて実際に、薬が目的細胞周辺に到着し、標的タンパク質が核内にある場合の薬の動きを大きさの観点から追ってみます

 

*なお本稿においてほぼ全ての図は、Molecular biology of the Cell (5th edition, Garland Science)(Mol. Biol. Cell)から引用させて頂きました。(1)

 

参考文献・動画

1. Molecular biology of the Cell (5th edition, Garland Science)

[amazonjs asin=”0815345240″ locale=”JP” tmpl=”Small” title=”Molecular Biology of the Cell”] [amazonjs asin=”453206239X” locale=”JP” tmpl=”Small” title=”パワーズ オブ テン―宇宙・人間・素粒子をめぐる大きさの旅”] [amazonjs asin=”B00005MIG1″ locale=”JP” tmpl=”Small” title=”EAMES FILMS:チャールズ&レイ・イームズの映像世界 DVD”]
Avatar photo

MasaN.

投稿者の記事一覧

博士(工)。できる範囲で。

関連記事

  1. 静電相互作用を駆動力とする典型元素触媒
  2. 溶液中での安定性と反応性を両立した金ナノ粒子触媒の開発
  3. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  4. 最も引用された論文
  5. 13族元素含有ベンゼンの合成と性質の解明
  6. Z-選択的オレフィンメタセシス
  7. ⾦属触媒・バイオ触媒の⼒で⽣物活性分⼦群の⾻格を不⻫合成
  8. 第30回光学活性化合物シンポジウム

注目情報

ピックアップ記事

  1. 光親和性標識 photoaffinity labeling (PAL)
  2. 世界最高の耐久性を示すプロパン脱水素触媒
  3. 有賀 克彦 Katsuhiko Ariga
  4. 大環状ヘテロ環の合成から抗がん剤開発へ
  5. V字型分子が実現した固体状態の優れた光物性
  6. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate
  7. 有機合成化学協会誌2024年6月号:四塩化チタン・選択的フッ素化・環境調和型反応・インデン・インダセン・環状ペプチド
  8. ERATO 野崎 樹脂分解触媒:特任研究員募集のお知らせ
  9. (-)-Cyanthiwigin Fの全合成
  10. 「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP