[スポンサーリンク]

化学者のつぶやき

既存の農薬で乾燥耐性のある植物を育てる

[スポンサーリンク]

 

現在地球上の人類の6人に1人が砂漠化の影響を受けていると言われています。科学的な見地からの砂漠を含めた乾燥地の緑化は、様々な意見があるとは思いますが、地球温暖化や食糧問題の解決のために推進すべき研究の1つだと思います。

さて、今回刻一刻と広がっている砂漠化に歯止めをかけれるかもしれない、乾燥耐性のある植物を育てる試みとして、新しい手法が報告されていましたので紹介したいと思います。

 

気孔ー植物の呼吸口

植物は気孔とよばれる2つの孔辺細胞にかこまれた小さな孔をもちます。植物は環境変化に応じてこの孔を開閉し、光合成に必要な二酸化炭素の取り込みや蒸散などの植物と大気間のガス交換を調節しています(図 1a)。この気孔の閉鎖を制御している植物ホルモンがアブシシン酸(ABA)です(図 1b)。乾燥ストレスをうけた植物はABAを生合成することで気孔を閉じ、体内からの水の蒸散量を抑え乾燥から身を守っています。

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

 

ABAの作用機序を解明する

ABAは今から50年以上前の1963年に発見されていましたが、ABAがどのタンパク質に作用して気孔の開閉に関与するのか全くの謎でした。

その作用機序を解明するために、受容タンパク質の単離に成功したのがABAの発見から50年以上を経た2009年。その理由は機能が重複した複数の受容体が存在するためでした。この冗長性を回避するため、米国カリフォルニア大学リバーサイド校の若手科学者Cutlerらのグループは化学遺伝的(ケミカルジェネティクス)スクリーニングにおいて、単一もしくは数個の受容体を標的とする分子(選択的アゴニスト)を用いることで同定を試みたのです。

詳細は述べませんが、CutlerらはABAの受容体タンパク質PYR1を初めて同定することに成功しました。[1]この研究により、PYR1によるABAの受容が気孔の閉鎖を引き起こすことが明らかになりました。

 

PYR1アゴニストの開発の難航

標的タンパク質が決まれば、高価で入手困難なABAにかわり、PYR1に結合して機能する小分子(PYR1アゴニスト)を作ることで、植物を乾燥から守ることができます。しかし、新しい農薬の開発と認可の獲得には通常、約10年以上の期間が必要とされており、早急な実現は困難でした。

一方で、入手容易で安全性が実証されている既存の農薬をABAの代わりにもちいることができれば、開発、認可を減ることなく、乾燥地帯での農業に大きく貢献できます。

 

PYR1を既存の農薬用に”改変する”

その方法の1つとして、Cutlerらは、PYR1のABA結合部位の立体構造を既存の農薬に合わせて新しく作りかえることで、既存の農薬をABAの代わりとして使うことを考えたのです。

しかし、「言うは易し、行なうは難し」が研究にはつきものです。

改変したPYR1がABAと結合してしまうと、植物が自ら産生するABAと農薬が競合してしまいます。そのため、目的とする改変タンパク質はABAと結合しないことが求められます。

これまでの研究で、59番目のリシン残基(59K)はABAのカルボン酸部位との結合に重要であることが知られていました。

彼らはリシン残基(59K)をアルギニン(R)に置換すると、ABAとの結合力が大きく低下することを見出しました。さらにリシン残基(59K)をアルギニン(R)に置換したPYR1(K59R)のアミノ酸残基をいくつか置換することで、ついに、ABAに結合しないが、mandipropamid(既存の市販農薬)には結合できるPYR1MANDIを開発することに成功しました(図2、図3)。[2]

 

図2. ABAとPYR1の結晶構造(左図)、mandipropamideとPYR1MANDIの結晶構造(右図)

図2. ABAとPYR1の結晶構造(左図)、mandipropamidとPYR1MANDIの結晶構造(右図)

 

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamide-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamide存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamid-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamid存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

 

PYR1MANDIの能力はいかに?

開発したPYR1MANDIを遺伝子組み換え技術によりトマトとシロイヌナズナにそれぞれ導入し、得られた遺伝子組み換えトマトとシロイヌナズナを用いてmandipropamid存在下での葉の温度を測定したところ、気孔が閉鎖し蒸散量が低下したことに由来する温度上昇が観測されました(図 4a,b)。さらに、乾燥環境下におけるPYR1MANDIの組み換えシロイヌナズナの生育を観察したところ、mandipropamid存在下で優れた乾燥耐性が確認されました (図 4c)。

 

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamide存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamide存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamide存在下での乾燥耐性の評価。

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamid存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamid存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamid存在下での乾燥耐性の評価。

 

今後の展開

もちろん遺伝子組み換えですので、食物に使うことは憚られます。そのため、主なターゲットは砂漠の緑化など食べない植物になります。今後、彼らの開発した技術による乾燥地の緑化と農業開発への展開を期待したいとお思います。

 

関連文献

  1. Sang-Youl Park et al. Science 2009 DOI: 10.1126/science.1173041
  2. Park, S.-Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, DOI: 10.1038/nature14123

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  2. テルペンを酸化的に”飾り付ける”
  3. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体…
  4. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…
  5. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  6. OMCOS19に参加しよう!
  7. 標準物質ーChemical Times特集より
  8. 尿から薬?! ~意外な由来の医薬品~ その2

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノバルティス、米カイロンを5000億円で完全子会社に
  2. プラスマイナスエーテル!?
  3. ボリルヘック反応の開発
  4. 天然有機化合物のNMRデータベース「CH-NMR-NP」
  5. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観察ー
  6. ジョーンズ酸化 Jones Oxidation
  7. 不斉配位子
  8. 表裏二面性をもつ「ヤヌス型分子」の合成
  9. 2011年10大化学ニュース【前編】
  10. ヴィ·ドン Vy M. Dong

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

可視光光触媒でツルツルのベンゼン環をアミノ化する

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの…

【21卒】太陽ホールディングスインターンシップ

太陽HDでの研究職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場とし…

アラインをパズルのピースのように繋げる!

第198回のスポットライトリサーチは、広島大学工学研究科 博士課程前期2年の田中英也さんにお願いしま…

創薬・医療分野セミナー受講者募集(Blockbuster TOKYO研修プログラム第2回)

東京都主催の創薬・医療系ベンチャー育成支援プログラムである「Blockbuster TOKYO」では…

Chem-Station Twitter

PAGE TOP