[スポンサーリンク]

化学者のつぶやき

既存の農薬で乾燥耐性のある植物を育てる

 

現在地球上の人類の6人に1人が砂漠化の影響を受けていると言われています。科学的な見地からの砂漠を含めた乾燥地の緑化は、様々な意見があるとは思いますが、地球温暖化や食糧問題の解決のために推進すべき研究の1つだと思います。

さて、今回刻一刻と広がっている砂漠化に歯止めをかけれるかもしれない、乾燥耐性のある植物を育てる試みとして、新しい手法が報告されていましたので紹介したいと思います。

 

気孔ー植物の呼吸口

植物は気孔とよばれる2つの孔辺細胞にかこまれた小さな孔をもちます。植物は環境変化に応じてこの孔を開閉し、光合成に必要な二酸化炭素の取り込みや蒸散などの植物と大気間のガス交換を調節しています(図 1a)。この気孔の閉鎖を制御している植物ホルモンがアブシシン酸(ABA)です(図 1b)。乾燥ストレスをうけた植物はABAを生合成することで気孔を閉じ、体内からの水の蒸散量を抑え乾燥から身を守っています。

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

 

ABAの作用機序を解明する

ABAは今から50年以上前の1963年に発見されていましたが、ABAがどのタンパク質に作用して気孔の開閉に関与するのか全くの謎でした。

その作用機序を解明するために、受容タンパク質の単離に成功したのがABAの発見から50年以上を経た2009年。その理由は機能が重複した複数の受容体が存在するためでした。この冗長性を回避するため、米国カリフォルニア大学リバーサイド校の若手科学者Cutlerらのグループは化学遺伝的(ケミカルジェネティクス)スクリーニングにおいて、単一もしくは数個の受容体を標的とする分子(選択的アゴニスト)を用いることで同定を試みたのです。

詳細は述べませんが、CutlerらはABAの受容体タンパク質PYR1を初めて同定することに成功しました。[1]この研究により、PYR1によるABAの受容が気孔の閉鎖を引き起こすことが明らかになりました。

 

PYR1アゴニストの開発の難航

標的タンパク質が決まれば、高価で入手困難なABAにかわり、PYR1に結合して機能する小分子(PYR1アゴニスト)を作ることで、植物を乾燥から守ることができます。しかし、新しい農薬の開発と認可の獲得には通常、約10年以上の期間が必要とされており、早急な実現は困難でした。

一方で、入手容易で安全性が実証されている既存の農薬をABAの代わりにもちいることができれば、開発、認可を減ることなく、乾燥地帯での農業に大きく貢献できます。

 

PYR1を既存の農薬用に”改変する”

その方法の1つとして、Cutlerらは、PYR1のABA結合部位の立体構造を既存の農薬に合わせて新しく作りかえることで、既存の農薬をABAの代わりとして使うことを考えたのです。

しかし、「言うは易し、行なうは難し」が研究にはつきものです。

改変したPYR1がABAと結合してしまうと、植物が自ら産生するABAと農薬が競合してしまいます。そのため、目的とする改変タンパク質はABAと結合しないことが求められます。

これまでの研究で、59番目のリシン残基(59K)はABAのカルボン酸部位との結合に重要であることが知られていました。

彼らはリシン残基(59K)をアルギニン(R)に置換すると、ABAとの結合力が大きく低下することを見出しました。さらにリシン残基(59K)をアルギニン(R)に置換したPYR1(K59R)のアミノ酸残基をいくつか置換することで、ついに、ABAに結合しないが、mandipropamid(既存の市販農薬)には結合できるPYR1MANDIを開発することに成功しました(図2、図3)。[2]

 

図2. ABAとPYR1の結晶構造(左図)、mandipropamideとPYR1MANDIの結晶構造(右図)

図2. ABAとPYR1の結晶構造(左図)、mandipropamidとPYR1MANDIの結晶構造(右図)

 

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamide-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamide存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamid-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamid存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

 

PYR1MANDIの能力はいかに?

開発したPYR1MANDIを遺伝子組み換え技術によりトマトとシロイヌナズナにそれぞれ導入し、得られた遺伝子組み換えトマトとシロイヌナズナを用いてmandipropamid存在下での葉の温度を測定したところ、気孔が閉鎖し蒸散量が低下したことに由来する温度上昇が観測されました(図 4a,b)。さらに、乾燥環境下におけるPYR1MANDIの組み換えシロイヌナズナの生育を観察したところ、mandipropamid存在下で優れた乾燥耐性が確認されました (図 4c)。

 

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamide存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamide存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamide存在下での乾燥耐性の評価。

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamid存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamid存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamid存在下での乾燥耐性の評価。

 

今後の展開

もちろん遺伝子組み換えですので、食物に使うことは憚られます。そのため、主なターゲットは砂漠の緑化など食べない植物になります。今後、彼らの開発した技術による乾燥地の緑化と農業開発への展開を期待したいとお思います。

 

関連文献

  1. Sang-Youl Park et al. Science 2009 DOI: 10.1126/science.1173041
  2. Park, S.-Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, DOI: 10.1038/nature14123

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. アルメニア初の化学系国際学会に行ってきた!③
  2. 光学活性有機ホウ素化合物のカップリング反応
  3. トイレから学ぶ超撥水と超親水
  4. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子
  5. 文具に凝るといふことを化学者もしてみむとてするなり ⑦:「はん蔵…
  6. iPhone/iPod Touchで使える化学アプリ-ケーション…
  7. サイコロを作ろう!
  8. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 一流の化学雑誌をいかにしてつくるか?
  2. サノフィ・アベンティスグループ、「タキソテール」による進行乳癌の生存期間改善効果を発表
  3. Z選択的ホルナー-エモンズ試薬:Z-selective Horner-Emmons Reagents
  4. O-アシルイソペプチド法 O-acylisopeptide Method
  5. 水素結合の発見者は誰?
  6. セミナー/講義資料で最先端化学を学ぼう!【有機合成系・2016版】
  7. 2009年1月人気化学書籍ランキング
  8. Wolfram|Alphaでお手軽物性チェック!「Reagent Table Widget」
  9. タンパク質の構造と機能―ゲノム時代のアプローチ
  10. 香りの化学1

関連商品

注目情報

注目情報

最新記事

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

Chem-Station Twitter

PAGE TOP