[スポンサーリンク]

化学者のつぶやき

既存の農薬で乾燥耐性のある植物を育てる

[スポンサーリンク]

 

現在地球上の人類の6人に1人が砂漠化の影響を受けていると言われています。科学的な見地からの砂漠を含めた乾燥地の緑化は、様々な意見があるとは思いますが、地球温暖化や食糧問題の解決のために推進すべき研究の1つだと思います。

さて、今回刻一刻と広がっている砂漠化に歯止めをかけれるかもしれない、乾燥耐性のある植物を育てる試みとして、新しい手法が報告されていましたので紹介したいと思います。

 

気孔ー植物の呼吸口

植物は気孔とよばれる2つの孔辺細胞にかこまれた小さな孔をもちます。植物は環境変化に応じてこの孔を開閉し、光合成に必要な二酸化炭素の取り込みや蒸散などの植物と大気間のガス交換を調節しています(図 1a)。この気孔の閉鎖を制御している植物ホルモンがアブシシン酸(ABA)です(図 1b)。乾燥ストレスをうけた植物はABAを生合成することで気孔を閉じ、体内からの水の蒸散量を抑え乾燥から身を守っています。

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

 

ABAの作用機序を解明する

ABAは今から50年以上前の1963年に発見されていましたが、ABAがどのタンパク質に作用して気孔の開閉に関与するのか全くの謎でした。

その作用機序を解明するために、受容タンパク質の単離に成功したのがABAの発見から50年以上を経た2009年。その理由は機能が重複した複数の受容体が存在するためでした。この冗長性を回避するため、米国カリフォルニア大学リバーサイド校の若手科学者Cutlerらのグループは化学遺伝的(ケミカルジェネティクス)スクリーニングにおいて、単一もしくは数個の受容体を標的とする分子(選択的アゴニスト)を用いることで同定を試みたのです。

詳細は述べませんが、CutlerらはABAの受容体タンパク質PYR1を初めて同定することに成功しました。[1]この研究により、PYR1によるABAの受容が気孔の閉鎖を引き起こすことが明らかになりました。

 

PYR1アゴニストの開発の難航

標的タンパク質が決まれば、高価で入手困難なABAにかわり、PYR1に結合して機能する小分子(PYR1アゴニスト)を作ることで、植物を乾燥から守ることができます。しかし、新しい農薬の開発と認可の獲得には通常、約10年以上の期間が必要とされており、早急な実現は困難でした。

一方で、入手容易で安全性が実証されている既存の農薬をABAの代わりにもちいることができれば、開発、認可を減ることなく、乾燥地帯での農業に大きく貢献できます。

 

PYR1を既存の農薬用に”改変する”

その方法の1つとして、Cutlerらは、PYR1のABA結合部位の立体構造を既存の農薬に合わせて新しく作りかえることで、既存の農薬をABAの代わりとして使うことを考えたのです。

しかし、「言うは易し、行なうは難し」が研究にはつきものです。

改変したPYR1がABAと結合してしまうと、植物が自ら産生するABAと農薬が競合してしまいます。そのため、目的とする改変タンパク質はABAと結合しないことが求められます。

これまでの研究で、59番目のリシン残基(59K)はABAのカルボン酸部位との結合に重要であることが知られていました。

彼らはリシン残基(59K)をアルギニン(R)に置換すると、ABAとの結合力が大きく低下することを見出しました。さらにリシン残基(59K)をアルギニン(R)に置換したPYR1(K59R)のアミノ酸残基をいくつか置換することで、ついに、ABAに結合しないが、mandipropamid(既存の市販農薬)には結合できるPYR1MANDIを開発することに成功しました(図2、図3)。[2]

 

図2. ABAとPYR1の結晶構造(左図)、mandipropamideとPYR1MANDIの結晶構造(右図)

図2. ABAとPYR1の結晶構造(左図)、mandipropamidとPYR1MANDIの結晶構造(右図)

 

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamide-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamide存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamid-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamid存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

 

PYR1MANDIの能力はいかに?

開発したPYR1MANDIを遺伝子組み換え技術によりトマトとシロイヌナズナにそれぞれ導入し、得られた遺伝子組み換えトマトとシロイヌナズナを用いてmandipropamid存在下での葉の温度を測定したところ、気孔が閉鎖し蒸散量が低下したことに由来する温度上昇が観測されました(図 4a,b)。さらに、乾燥環境下におけるPYR1MANDIの組み換えシロイヌナズナの生育を観察したところ、mandipropamid存在下で優れた乾燥耐性が確認されました (図 4c)。

 

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamide存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamide存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamide存在下での乾燥耐性の評価。

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamid存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamid存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamid存在下での乾燥耐性の評価。

 

今後の展開

もちろん遺伝子組み換えですので、食物に使うことは憚られます。そのため、主なターゲットは砂漠の緑化など食べない植物になります。今後、彼らの開発した技術による乾燥地の緑化と農業開発への展開を期待したいとお思います。

 

関連文献

  1. Sang-Youl Park et al. Science 2009 DOI: 10.1126/science.1173041
  2. Park, S.-Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, DOI: 10.1038/nature14123

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 表面処理技術ーChemical Times特集より
  2. 「糖鎖レセプターに着目したインフルエンザウイルスの進化の解明」ー…
  3. 超原子結晶!TCNE!インターカレーション!!!
  4. 定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬…
  5. 第5回ICReDD国際シンポジウム開催のお知らせ
  6. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  7. π-アリルイリジウムに新たな光を
  8. 株式会社ナード研究所ってどんな会社?

注目情報

ピックアップ記事

  1. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  2. ダイエット食から未承認薬
  3. OMCOS19に参加しよう!
  4. 第32回フォーラム・イン・ドージン ~生命現象に関わる細胞外小胞の多彩な役割~ 主催:同仁化学研究所
  5. MEDCHEM NEWS 32-4 号「創薬の将来ビジョン」
  6. 「第55回国際化学オリンピック スイス大会」 日本代表が決定!:代表チームへの特別インタビュー
  7. KISTECおもちゃレスキュー こども救急隊・こども鑑識隊
  8. 多種多様な酸化リン脂質を網羅的に捉える解析・可視化技術を開発
  9. 「科研費の採択を受けていない研究者」へ研究費進呈?
  10. 「未来博士3分間コンペティション2020」の挑戦者を募集

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP