[スポンサーリンク]

化学者のつぶやき

小さなケイ素酸化物を得る方法

[スポンサーリンク]

 

四塩化ケイ素(SiCl4)をLiAlH4等で還元すると、シラン(SiH4)が発生します。

シランは、空気中で自発的に酸素と反応し、SiO2を与えます。

ケイ素と炭素

SiO2は、二酸化炭素(CO2)のケイ素類縁体ですが、これらは全く異なる性質を示します。
細かい説明は省きますが、、
(i) ケイ素の3s-3p軌道はサイズの差が大きく、混成軌道を形成する際の両軌道の相互作用が、同程度の2s-2p軌道サイズを持つ炭素の系よりも効果的ではない
(ii) 3p軌道の空間的広がりが大きいことや軌道内に節があることに起因して、π結合が弱い
などの特徴のため、π結合を持つケイ素化合物の合成には、電気陽性な置換基もしくは嵩高い立体保護基を導入するなど、通常、なんらかの安定化を必要とします。[1]

ところが、SiO2はケイ素周りに酸素が二つしかないので、容易にオリゴマー化して様々な多量体を形成し、そこでは全てのSi-O結合が単結合となります。このSiO2、サンドマンの主成分のでもあります。[2]
二酸化炭素が単量体として安定に存在できるのに対し、ここまで性質が違うとは、驚きですね。

単純に、反応エネルギーを見積もってみると、
SiO2: Si=O bond x 2 = 153 kcal/mol x 2 = 306 kcal/mol
[SiO2]n: Si-O bond x 4 = 111 kcal/mol x 4 = 444 kcal/mol
と、多量化によって、単位ユニット当たりおよそ138 kcal/mol、安定化することがわかりますね。

他にも類似の[SiaOb]を基本ユニットとする物質は、主にシリカートという形で存在しています。例えば、タルク [Mg6[Si8O20](OH)4]やトレモライト [Ca2Mg5(Si8O22)(OH)2]などなど。

 

rk20150504fig0

 

 

一方で、SiOやSiO2の単量体は、星間分子としてまたは高温下で検出された報告例があるのみで、遷移金属を用いたとしてもマトリックス中で観測するのが精いっぱいでした。[3]

さて、ごく最近、ジョージア大学のRobinsonらによって、Si2O3とSi2O4ユニットの安定化に成功したったぜ、という論文が報告されていたので紹介したいと思います。

Wang, Y.; Chen, M.; Xie, Y.; Wei, P.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Nature Chemistry 2015, 7, online, DOI:10.1038/nchem.2234

著者らは以前合成した、カルベンで安定化されたSi21)を原料として用いています。[4] と酸化窒素(N2O)との反応から、Si2O3ユニットを持つ化合物 (2)を50%の収率で得ています。また、と酸素との反応からは、Si2O4ユニットを持つ化合物 (3)がおよそ39%の収率で得られています。

 

rk20150504fig1

それぞれ、Si2O三員環及びSi2O2四員環骨格を持つ特徴的な分子構造を、X線構造解析によって明らかにしています(下図*原著論文より)。

 

rk20150504fig1-2

 

 

結合長や理論計算による電化分布、軌道の解析などから、2および3の電子状態には、それぞれ2A2Bの共鳴構造の寄与が大きく効いていると結論づけています。
やはり、Si=O二重結合を持つ状態は好ましくないのでしょうか。2A2Bの中のSi-O結合は、形式上すべて単結合ですもんね。つまり、カルベンの配位によって2A2Bの状態を導くことができた結果、このようなSi2On (n = 3 or 4)ユニットの安定化に成功したということでしょう。

NHCをうまく利用した研究、一段落するのかと思いきや、まだまだ出てきますね。
それではもう一つ、関連論文を紹介。

 

Ahmad, S. U.; Szilvási, T.; Irran, E.; Inoue, S. J. Am. Chem. Soc. 2015, ASAP. DOI: 10.1021/jacs.5b01853

 

ドイツ、ベルリン工科大の井上らは、NHCを使うことで、アシリウムイオンのケイ素類縁体の合成に成功しています。
アシリウムイオンとは、[R-C≡O]+の電子状態を示すカチオン種であり、炭素と酸素原子間には三重結合性が見られます。

 

rk20150504fig2

 

 

上述したとおり、ケイ素-酸素多重結合の反応性が高いことに起因して、アシリウムイオンのケイ素類縁体(シラ-アシリウム)[R-Si≡O]+を単離したという例は、これまでに報告されていません。著者らは、二つのNHCでサポートされたシリリウミリデン (4)というカチオン種を、反応の前駆体として用いています。

 

rk20150504fig3

 

 

カチオン性のアシリウム種を合成するためにカチオン種を原料に用いる、スマートなアプローチですね。4と二酸化炭素(CO2)の反応から、直接、シラ-アシリウム (5)を合成しています。この反応では、一酸化炭素が複製していることから、金属を用いない二酸化炭素の還元、という視点からも興味深い反応だと思います。

 

rk20150504fig3-2

 

 

また、先のRobinsonらによって合成された2および3と同様に、化合物5においても、5Aのような共鳴構造の寄与が分子の安定化に効いているようです。

活性な化合物を単離するには、一番安定そうな共鳴構造を見つけ、そこに狙いを絞った合成戦略を立てる というのが一つの有効な手段だということでしょう。「共鳴構造式」という基礎的なコンセプトは、日本だと高校の授業であたりで既に学ぶことと思います。最先端の研究においても、いかに基礎が重要であるか、ということを再認識させらるような内容だと感じます。

 

参考文献

  1.  Raabe, G.; Michl, J. Chem. Rev. 1985, 85, 419-509. DOI:10.1021/cr00069a005
  2.  砂から有機ケイ素の原料を!
  3.  (a) Jutzi, P. & Schubert, U. Silicon Chemistry: From the Atom to Extended Systems (Wiley-VCH, 2003); (b) Mehner, T.; Koppe, R.; Schnockel, H. Angew. Chem. Int. Ed. 1992, 31, 638-640. DOI: 10.1002/anie.199206381 ; (c) Mehner, T.; Schnockel, H.; Almond, M. J.; Downs, A. J. J. Chem. Soc. Chem. Commun. 1988, 117-119. DOI: 10.1039/C39880000117 ; (d) Chenier, J. H. B.; Howard, J. A.; Joly, H. A.; Mile, B.; Timms, P. L. Chem. Commun. 1990, 581-582. DOI: 10.1039/C39900000581; (e) Schnockel, H; Angew. Chem. Int. Ed. 1978, 17, 616-617. DOI: 10.1002/anie.197806161
  4.  Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer III, H. F.; Schleyer, P. v. R.; Robinson, G. H. Science 2008, 321, 1069. DOI:10.1126/science.1160768

 

関連書籍

 

関連リンク

  1.  C&E NEWS
  2. S. Inoue

(i)

(ii) Merkel setzt auf Zusammenarbeit mit Japan

(iii) Inoue-lab

関連記事

  1. DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異…
  2. 「関口存男」 ~語学の神様と言われた男~
  3. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントと…
  4. トーンカーブをいじって画像加工を見破ろう
  5. 化学と工業
  6. 有機硫黄ラジカル触媒で不斉反応に挑戦
  7. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  8. α,β-不飽和イミンのγ-炭素原子の不斉マイケル付加反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スターバースト型分子、ヘキサアリールベンゼン合成の新手法
  2. 有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カップリング・炭素環・ヘテロ環合成法・環状γ-ケトエステル・サキシトキシン
  3. “秒”で分析 をあたりまえに―利便性が高まるSFC
  4. ホウ素は求電子剤?求核剤?
  5. ビス(トリシクロヘキシルホスフィン)ニッケル(II)ジクロリド : Bis(tricyclohexylphosphine)nickel(II) Dichloride
  6. 【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など
  7. 銀を使ってリンをいれる
  8. ビナミジニウム塩 Vinamidinium Salt
  9. 日本初の化学専用オープンコミュニティ、ケムステSlack始動!
  10. 乾燥剤の脱水能は?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年5月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP