[スポンサーリンク]

化学者のつぶやき

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の回りのたくさんのものに含まれています。

答えは、植物の細胞壁の主成分、セルロースです。セルロースは、下図のようなD-グルコースがたくさん連なった多糖類です。実は植物だけでなく、様々なバクテリアによっても合成されていて、例えばフルーツポンチに入っているナタデココも、バクテリアから作られたセルロースです。

バクテリアのセルロースは、細胞の外に分泌され、バクテリア細胞を覆う働きをしています。バクテリアが植物などの表面にくっついたり、バイオフィルムというバクテリアの集合体を形成したりするのにとても重要です。

さて、今回はScience誌から、大腸菌やサルモネラ菌において、セルロースがある化学修飾を受けていることを発見したという論文を紹介します。これまで単純にセルロースと考えられてきた物質の約半分が、実はエタノールアミンリン酸による修飾を受けていて、この化学修飾がバイオフィルム形成に重要な役割を果たしているということが示されました。

“Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose”

Thongsomboon, W.; Serra, D. O.; Possling, A.; Hadjineophytou, C.; Hengge, R.; Cegelski, L. Science 2018, 359, 334. DOI: 10.1126/science.aao4096

1. 発見の経緯

図1. E. coliのバイオフィルムの構造。E. coli細胞をcurliやflagella、セルロースが覆っている。

バクテリア細胞を覆っている構造体は、細胞外マトリックス(ECM)と呼ばれ、curliというアミロイド繊維や鞭毛繊維(flagella)、セルロースから成り立っています(図1)。セルロースは水にも有機溶媒にも溶けないので、色素で染色したり、強酸で加水分解したサンプルを構造解析することにより、その存在が確認されていました。ただ、色素染色では化学構造を具体的に調べることはできず、強酸処理ではもともとの化学構造が壊れてしまう可能性があります。また、どの物質がどれくらいの割合で存在するのかを定量的に調べることもできません。

そこで、スタンフォード大学のCegelski教授らは、固体NMRを用いてECMの研究を進めていました。2013年の彼女らの報告では、curliとセルロースがどれくらいの割合で存在するのかを、固体NMRで定量的に示すことに成功しています。[1] 興味深いことに、この論文中で、ECMサンプルのNMRスペクトルにセルロース由来ではない正体不明のピーク(δc = 45 ppm)が見られることが確認されています(図2)。

図2. 13C NMRスペクトル。(上)比較用。セルロース・色素(コンゴレッド)の純サンプル。(下)コンゴレッドで染色したE. coliのECM。(curli生成遺伝子csgAはノックアウトされている。)

このピークは一体何なのか…?今回の論文で、Cegelski教授らは、15N NMRや31P NMR、13C{15N} REDOR、13C{31P} REDORなどの固体NMR法、さらに強酸で短時間処理したサンプルの溶液NMRや質量分析により、このピークがエタノールアミンリン酸基(pEtNのものであることを示しました(図3a, b)。

図3. (a) pEtN修飾されたセルロース。(b) pEtNセルロースの13C NMRスペクトル。(c) 回転エコー二重共鳴(REDOR)法による13C{31P} NMRスペクトル。上側は差スペクトルを示す。

図3cは回転エコー二重共鳴(REDOR)法による13C{31P} NMRスペクトルを示しています。この手法は、固体NMRにおいて、異種核の双極子カップリングを調べる方法です。(原理は違いますが、核間の距離を知れるという意味では、NOE測定と似ています。)リン原子とのカップリングが大きい炭素原子のピークが差スペクトルに現れています。

修飾がどれくらいの割合で起こっているかというと、セルロースを構成するグルコースの約半分がpEtNを持っています(炭素比C1: C8 = 1.9:1)。つまり、セルロースのほんの一部などではなく、かなりの割合でpEtN修飾が起こっているのです。

2. 膜タンパクBcsGがpEtN修飾を行う

では、一体どのタンパクがこの化学修飾を行っているのでしょうか。E. coliのセルロース産生に関わる遺伝子はbcsGFEyhjR-bcsQABZCという2つの部分(オペロン)に分かれていて、前者の機能はあまり分かっていません(図4a)。そこで、彼女らはbcsG, bcsF, bcsEをそれぞれノックアウトしたE. coliを用意し、ECMサンプルのNMRを測定しました。すると、bcsGをノックアウトしたサンプルでは、pEtN修飾に由来するピークがほぼ完全に消失し、非修飾のセルロースだけが作られることがわかりました。

また、E. coliや他のバクテリアにおいては、リン脂質の一つであるホスファチジルエタノールアミン(PE)からpEtN基を他の分子に転移する酵素がいくつか知られています(図4b)。このリン脂質のpEtN基は、天然のアミノ酸であるセリンから合成されることが知られています。Cegelski教授らは、同位体標識したセリンを含む培地でE. coliを培養し、13C NMRデータに変化があるかどうかを調べました。すると、同位体標識を行ったECMサンプルにおいては、炭素C7のピーク強度がかなり大きくなっていることが分かりました(図4c)。他の炭素のピーク強度比はほぼ変化していない一方で、C7のピークのみが大きく変化しています。これは、「セリンからリン脂質PEが合成され、PEのpEtN基がセルロースへと転移された」という考えに一致します。bcsGが実際にPEを基質としてセルロースの修飾を行っているかはっきりとは示されていませんが、少なくともセリンがpEtN修飾の主な原料となっていることが示されています。

図4. (a) E. coliのセルロース合成遺伝子。(b) pEtN基を持つリン脂質(PE)の構造。(※脂肪酸部位は多様。)(c) 13C標識したセリン存在下で培養した細胞のECMのNMRスペクトル(論文より)。右図は同位体標識の位置と、炭素C7の位置を示す。

3. セルロースのpEtN修飾は、バイオフィルムの構造に影響する

さて、セルロースの化学修飾は、細胞レベルではどんな役割を果たしているのでしょうか?バイオフィルム形成への影響を調べるため、Cegelski教授らは (i) pEtN修飾セルロースを合成する(AR3110(ii) セルロースを合成しない(ΔbcsAまたはW3110(iii) セルロースは合成するがpEtN修飾をしない(ΔbcsG、それぞれのE. coliを用意しました(図5)。驚くことに、pEtN修飾のみを失くした (iii) のサンプルにおいて、セルロース自体を除いた (ii) と同様の、バイオフィルムの形状変化やECM構造が見られました。これは、pEtN修飾がセルロースのECMとしての機能にとって非常に重要であることを示しています。

図5. 各E. coliサンプルのバイオフィルムの形状とSEM画像(論文より一部抜粋)。

4. おわりに

pEtN修飾の有無が、細胞の挙動にこれだけ大きな影響を与えている、という事実はとても興味深いです。論文中では、E. coliだけでなくSalmonella菌でもpEtN修飾が確認されているので、他にも同じような化学修飾を行うバクテリアがたくさん存在するのかもしれません。

また、論文自体の評価として、NMRによる化学修飾の同定、修飾を行うタンパクの詳細な分析、さらに実際にバイオフィルムに与える影響など、各レベルでの分析をしっかり行っているとても優れた論文だと思います。こんなに重大な化学修飾が、今まで知られていなかったことも驚きですが、それを発見することができた固体NMRはとても有用な解析ツールだと感じました。今後、他の種類の修飾が発見されるかどうか気になります。

(ちなみに、気になったので調べてみたのですが、研究室でよく用いられている大腸菌の多くは、セルロースを合成しないようです。K-12系統(DH5αなどが含まれる)の大腸菌の古い株W3110において、セルロース合成遺伝子にナンセンス変異が入っていることが報告されています。[2] B系統でも、BL21(DE3)がセルロースを分泌しないことが確認されています。[3]

参考文献

  1. Cegelski, L. et al., J. Mol. Biol. 2013, 425, 4286. DOI: 10.1016/j.jmb.2013.06.022
  2. Hengge et al., J. Bacteriol. 2013, 195, 5540. DOI: 10.1128/JB.00946-13
  3. Krasteva, P. V.; Bernal-Bayard, J.; Travier, L. et al. Nat. Commun. 2017, 8, 2065. DOI: 10.1038/s41467-017-01523-2

関連リンク

関連書籍

 

The following two tabs change content below.
kanako

kanako

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. オペレーションはイノベーションの夢を見るか? その1
  2. ビッグデータが一変させる化学研究の未来像
  3. 第10回次世代を担う有機化学シンポジウムに参加してきました
  4. 合成とノーベル化学賞
  5. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  6. 会社説明会で鋭い質問をしよう
  7. 酒石酸にまつわるエトセトラ
  8. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ホットキーでクールにChemDrawを使いこなそう!
  2. 化学の力で迷路を解く!
  3. 信じられない!驚愕の天然物たち
  4. 化学遺産財団
  5. カルボン酸をホウ素に変換する新手法
  6. ナノチューブを大量生産、産業技術総合研が技術開発
  7. 個性あるTOCその③
  8. アルキンメタセシス Alkyne Metathesis
  9. プレヴォスト/ウッドワード ジヒドロキシル化反応 Prevost/Woodward Dihydroxylation
  10. トムソン:2008年ノーベル賞の有力候補者を発表

関連商品

注目情報

注目情報

最新記事

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~

日華化学(本社福井県福井市、江守康昌社長)は、髪へのダメージや頭皮への刺激がなく、アレルギーのリスク…

スナップタグ SNAP-tag

スナップタグ(SNAP-tag)は、特定のタンパク質だけを化学標識したいときに、目印として融合発現さ…

Chem-Station Twitter

PAGE TOP