[スポンサーリンク]

化学者のつぶやき

細菌を取り巻く生体ポリマーの意外な化学修飾

[スポンサーリンク]

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の回りのたくさんのものに含まれています。

答えは、植物の細胞壁の主成分、セルロースです。セルロースは、下図のようなD-グルコースがたくさん連なった多糖類です。実は植物だけでなく、様々なバクテリアによっても合成されていて、例えばフルーツポンチに入っているナタデココも、バクテリアから作られたセルロースです。

バクテリアのセルロースは、細胞の外に分泌され、バクテリア細胞を覆う働きをしています。バクテリアが植物などの表面にくっついたり、バイオフィルムというバクテリアの集合体を形成したりするのにとても重要です。

さて、今回はScience誌から、大腸菌やサルモネラ菌において、セルロースがある化学修飾を受けていることを発見したという論文を紹介します。これまで単純にセルロースと考えられてきた物質の約半分が、実はエタノールアミンリン酸による修飾を受けていて、この化学修飾がバイオフィルム形成に重要な役割を果たしているということが示されました。

“Phosphoethanolamine cellulose: A naturally produced chemically modified cellulose”

Thongsomboon, W.; Serra, D. O.; Possling, A.; Hadjineophytou, C.; Hengge, R.; Cegelski, L. Science 2018, 359, 334. DOI: 10.1126/science.aao4096

1. 発見の経緯

図1. E. coliのバイオフィルムの構造。E. coli細胞をcurliやflagella、セルロースが覆っている。

バクテリア細胞を覆っている構造体は、細胞外マトリックス(ECM)と呼ばれ、curliというアミロイド繊維や鞭毛繊維(flagella)、セルロースから成り立っています(図1)。セルロースは水にも有機溶媒にも溶けないので、色素で染色したり、強酸で加水分解したサンプルを構造解析することにより、その存在が確認されていました。ただ、色素染色では化学構造を具体的に調べることはできず、強酸処理ではもともとの化学構造が壊れてしまう可能性があります。また、どの物質がどれくらいの割合で存在するのかを定量的に調べることもできません。

そこで、スタンフォード大学のCegelski教授らは、固体NMRを用いてECMの研究を進めていました。2013年の彼女らの報告では、curliとセルロースがどれくらいの割合で存在するのかを、固体NMRで定量的に示すことに成功しています。[1] 興味深いことに、この論文中で、ECMサンプルのNMRスペクトルにセルロース由来ではない正体不明のピーク(δc = 45 ppm)が見られることが確認されています(図2)。

図2. 13C NMRスペクトル。(上)比較用。セルロース・色素(コンゴレッド)の純サンプル。(下)コンゴレッドで染色したE. coliのECM。(curli生成遺伝子csgAはノックアウトされている。)

このピークは一体何なのか…?今回の論文で、Cegelski教授らは、15N NMRや31P NMR、13C{15N} REDOR、13C{31P} REDORなどの固体NMR法、さらに強酸で短時間処理したサンプルの溶液NMRや質量分析により、このピークがエタノールアミンリン酸基(pEtNのものであることを示しました(図3a, b)。

図3. (a) pEtN修飾されたセルロース。(b) pEtNセルロースの13C NMRスペクトル。(c) 回転エコー二重共鳴(REDOR)法による13C{31P} NMRスペクトル。上側は差スペクトルを示す。

図3cは回転エコー二重共鳴(REDOR)法による13C{31P} NMRスペクトルを示しています。この手法は、固体NMRにおいて、異種核の双極子カップリングを調べる方法です。(原理は違いますが、核間の距離を知れるという意味では、NOE測定と似ています。)リン原子とのカップリングが大きい炭素原子のピークが差スペクトルに現れています。

修飾がどれくらいの割合で起こっているかというと、セルロースを構成するグルコースの約半分がpEtNを持っています(炭素比C1: C8 = 1.9:1)。つまり、セルロースのほんの一部などではなく、かなりの割合でpEtN修飾が起こっているのです。

2. 膜タンパクBcsGがpEtN修飾を行う

では、一体どのタンパクがこの化学修飾を行っているのでしょうか。E. coliのセルロース産生に関わる遺伝子はbcsGFEyhjR-bcsQABZCという2つの部分(オペロン)に分かれていて、前者の機能はあまり分かっていません(図4a)。そこで、彼女らはbcsG, bcsF, bcsEをそれぞれノックアウトしたE. coliを用意し、ECMサンプルのNMRを測定しました。すると、bcsGをノックアウトしたサンプルでは、pEtN修飾に由来するピークがほぼ完全に消失し、非修飾のセルロースだけが作られることがわかりました。

また、E. coliや他のバクテリアにおいては、リン脂質の一つであるホスファチジルエタノールアミン(PE)からpEtN基を他の分子に転移する酵素がいくつか知られています(図4b)。このリン脂質のpEtN基は、天然のアミノ酸であるセリンから合成されることが知られています。Cegelski教授らは、同位体標識したセリンを含む培地でE. coliを培養し、13C NMRデータに変化があるかどうかを調べました。すると、同位体標識を行ったECMサンプルにおいては、炭素C7のピーク強度がかなり大きくなっていることが分かりました(図4c)。他の炭素のピーク強度比はほぼ変化していない一方で、C7のピークのみが大きく変化しています。これは、「セリンからリン脂質PEが合成され、PEのpEtN基がセルロースへと転移された」という考えに一致します。bcsGが実際にPEを基質としてセルロースの修飾を行っているかはっきりとは示されていませんが、少なくともセリンがpEtN修飾の主な原料となっていることが示されています。

図4. (a) E. coliのセルロース合成遺伝子。(b) pEtN基を持つリン脂質(PE)の構造。(※脂肪酸部位は多様。)(c) 13C標識したセリン存在下で培養した細胞のECMのNMRスペクトル(論文より)。右図は同位体標識の位置と、炭素C7の位置を示す。

3. セルロースのpEtN修飾は、バイオフィルムの構造に影響する

さて、セルロースの化学修飾は、細胞レベルではどんな役割を果たしているのでしょうか?バイオフィルム形成への影響を調べるため、Cegelski教授らは (i) pEtN修飾セルロースを合成する(AR3110(ii) セルロースを合成しない(ΔbcsAまたはW3110(iii) セルロースは合成するがpEtN修飾をしない(ΔbcsG、それぞれのE. coliを用意しました(図5)。驚くことに、pEtN修飾のみを失くした (iii) のサンプルにおいて、セルロース自体を除いた (ii) と同様の、バイオフィルムの形状変化やECM構造が見られました。これは、pEtN修飾がセルロースのECMとしての機能にとって非常に重要であることを示しています。

図5. 各E. coliサンプルのバイオフィルムの形状とSEM画像(論文より一部抜粋)。

4. おわりに

pEtN修飾の有無が、細胞の挙動にこれだけ大きな影響を与えている、という事実はとても興味深いです。論文中では、E. coliだけでなくSalmonella菌でもpEtN修飾が確認されているので、他にも同じような化学修飾を行うバクテリアがたくさん存在するのかもしれません。

また、論文自体の評価として、NMRによる化学修飾の同定、修飾を行うタンパクの詳細な分析、さらに実際にバイオフィルムに与える影響など、各レベルでの分析をしっかり行っているとても優れた論文だと思います。こんなに重大な化学修飾が、今まで知られていなかったことも驚きですが、それを発見することができた固体NMRはとても有用な解析ツールだと感じました。今後、他の種類の修飾が発見されるかどうか気になります。

(ちなみに、気になったので調べてみたのですが、研究室でよく用いられている大腸菌の多くは、セルロースを合成しないようです。K-12系統(DH5αなどが含まれる)の大腸菌の古い株W3110において、セルロース合成遺伝子にナンセンス変異が入っていることが報告されています。[2] B系統でも、BL21(DE3)がセルロースを分泌しないことが確認されています。[3]

参考文献

  1. Cegelski, L. et al., J. Mol. Biol. 2013, 425, 4286. DOI: 10.1016/j.jmb.2013.06.022
  2. Hengge et al., J. Bacteriol. 2013, 195, 5540. DOI: 10.1128/JB.00946-13
  3. Krasteva, P. V.; Bernal-Bayard, J.; Travier, L. et al. Nat. Commun. 2017, 8, 2065. DOI: 10.1038/s41467-017-01523-2

関連リンク

関連書籍

 

kanako

kanako

投稿者の記事一覧

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. 人生、宇宙、命名の答え
  2. 化学英語論文/レポート執筆に役立つPCツール・決定版
  3. 製薬業界における複雑な医薬品候補の合成の設計について: Natu…
  4. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  5. アルキン来ぬと目にはさやかに見えねども
  6. 化学メーカー研究開発者必見!!新規事業立ち上げの成功確度を上げる…
  7. 2014年ノーベル化学賞・物理学賞解説講演会
  8. ジャーナル編集ポリシーデータベース「Transpose」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 潤滑油、グリースおよび添加剤の実践的分離【終了】
  2. ジャンフェン・カイ Jianfeng Cai
  3. サントリー生命科学研究者支援プログラム SunRiSE
  4. 「薬草、信じて使うこと」=自分に合ったものを選ぶ
  5. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!
  6. (-)-ウシクライドAの全合成と構造決定
  7. アミン存在下にエステル交換を進行させる触媒
  8. ヨードホルム (iodoform)
  9. 日本にあってアメリカにないガラス器具
  10. リチウムイオン電池のはなし~1~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

研究テーマ変更奮闘記 – PhD留学(前編)

研究をやる上で、テーマってやっぱり大事ですよね。私はアメリカの大学院に留学中(終盤)という立場ですが…

島津製作所がケムステVシンポに協賛しました

さて、第5回目があと1週間に迫り、第6回目の開催告知も終えたケムステVシンポ。実は第7回目も既に決定…

第99回―「配位子設計にもとづく研究・超分子化学」Paul Plieger教授

第99回の海外化学者インタビューは、ポール・プリーガー教授です。マッセイ大学基礎科学研究所に所属し、…

化学者のためのエレクトロニクス入門① ~電子回路の歴史編~

「化学者のためのエレクトロニクス入門」シリーズでは、今や私たちの日常生活と切っても切れないエレクトロ…

シグマトロピー転位によるキラルα-アリールカルボニルの合成法

アリールヨーダンとキラルオキサゾリンを用いた-シグマトロピー転位によるジアステレオ選択的α-アリール…

Chem-Station Twitter

PAGE TOP