[スポンサーリンク]

化学者のつぶやき

アミドをエステルに変化させる触媒

[スポンサーリンク]

アミドはタンパク質のアミノ酸をつなぐ重要な結合様式であり、天然物や医薬品においてもよくみられる官能基です。アミノ基上の窒素原子の非共有電子対がカルボニル基と共役することで、アミドの炭素–窒素結合は二重結合性を獲得し、求核剤に対して高い安定性を示すことが知られています(図 1a)。そのため、アミドの炭素–窒素結合の切断は困難です。

生物は細胞機能の制御やタンパク質の分解のため特定のアミド結合(ペプチド結合)の切断を行いますが、この切断は、生体内のプロテアーゼを触媒とし、温和な条件(体温、ほぼ中性)で進行します。一方、合成化学においては、一般的に強酸や強塩基、高温などの激しい反応条件を必要とするのが常識です(図 1b)。

2015-10-16_02-59-11

図1 アミドの反応性

 

安定なアミド結合をどーにかして変換するためには、あるトリックを使えば可能となります。具体的な例は示しませんが、アミドを強制的にねじって共役をきってみたり、アミドのカルボニルをより活性化するために、金属がうまく配位できるような置換基を窒素上に導入してみたり。そのようなトリックを使わなければ、やっぱりアミドは安定です。大事なことなのでもう一度いいますが常識です

最近その常識を覆すような反応が最近報告されました。米国カリフォルニア州立大学のHoukGargらは強酸、強塩基をもちいない温和な条件でのアミドのエステル化反応を開発したのです。

 

“Conversion of amides to esters by the nickel-catalysed activation of amide C–N bonds”

Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K.;Nature2015, 524, 79.

DOI: 10.1038/nature14615

 

ではどのようにアミド結合を切断(活性化)したのでしょうか?みていきましょう。

 

アミド結合を活性化する

著者らは、アミドの炭素–窒素結合(C–N結合)を遷移金属触媒で活性化することで、エステル化反応を進行させようと考えました。すなわち、C–N結合が遷移金属触媒に酸化的付加した活性種2に対して、求核剤を作用させることでカルボニル基に求核剤が付加した化合物3とアミン4が得られると想定しました(図 2a)。

検討の結果、遷移金属触媒にフェノール誘導体[1]やアニリン誘導体[2]などの強固な炭素–ヘテロ原子結合の活性化が可能であるニッケル触媒を、求核剤はアルコールを用いることでアミドからエステルへの変換反応を可能としたのです(図 2b)。

 

2015-10-16_03-09-36

図2 アミド結合の遷移金属触媒による活性化

 

基質適用範囲

本反応は芳香族アミドに限られますが、芳香族上の置換基は電子求引基、供与基に関わらず適用可能であり、ヘテロ芳香族アミドに対しても反応は問題なく進行します。窒素上の置換基は、アルキル基のみでは反応は起こらず、フェニル基や電子求引性の置換基がある場合に反応は進行します(図 3a)。求核剤は、嵩高いアルコールや糖のような複雑なアルコールも適用できます(図 3b)。アミドとエステルが共存し、不斉点をもつ化合物もアミドが選択的にエステル化され、脱離したアミノ酸誘導体のエナンチオ過剰率も保持されるようです (図 3c)。

2015-10-16_03-10-19

図3 ニッケル触媒を用いたアミドのエステル化反応

 

反応機構について

推定反応機構を図4に示します。初めに触媒1のNHC配位子が一つ解離し、芳香族アミドの芳香環が1に配位することで中間体2を形成します。続いて、ニッケルにC–N結合の酸化的付加が起こり、3を経て配位子交換により中間体4となります。ニッケルの還元的脱離により中間体5を形成した後に、生成物の解離とともに触媒1が再生することで触媒サイクルは完結します 。

 

2015-10-16_03-10-53

図4 触媒サイクル

 

また、本反応機構において、1) 律速段階は酸化的付加であること 2) 反応全体の自由エネルギー変化は負となり、反応の進行を熱力学的に支持することをDFT計算により明らかとしています。

 

まとめ

今回著者らは、遷移金属触媒によるアミドの直接的なC–N結合の活性化にはじめて成功しました[3]。本反応により、アミドは変換しうる官能基としてみなすことができ、合成戦略の幅が拡がります。今回はアミドのエステル化の報告ですが、例えば、用いる求核剤を変えたり、脱カルボニル化反応[4]により、アミドを様々な官能基に変換できる可能性があります。結合活性化研究の未来とそれを実現させる優れた配位子および触媒の登場が楽しみですね。

 

参考文献

  1. Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Rev. 2011, 111, 1346. DOI: 10.1021/cr100259t
  2. Tobisu, M.; Nakamura, K.; Chatani, N. Am. Chem. Soc. 2014, 136, 5587. DOI: 10.1021/ja501649a
  3. Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Rev. 2015. ASAP. DOI: 10.1021/acs.chemrev.5b00386
  4. Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. Am. Chem. Soc. 2012, 134, 13573. DOI: 10.1021/ja306062c

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 機能性ナノマテリアル シクロデキストリンの科学ーChemical…
  2. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレ…
  3. 博士課程学生の経済事情
  4. 9‐Dechlorochrysophaentin Aの合成と細胞…
  5. 恋する創薬研究室
  6. 化学の力で複雑なタンパク質メチル化反応を制御する
  7. 嫌気性コリン代謝阻害剤の開発
  8. 私がケムステスタッフになったワケ(5)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Pfizer JAK阻害薬tofacitinib承認勧告
  2. 植物たちの静かな戦い
  3. 橘 熊野 Yuya Tachibana
  4. エンテロシン Enterocin
  5. 酸窒化物合成の最前線:低温合成法の開発
  6. トビアス・リッター Tobias Ritter
  7. サクラの酵母で作った赤い日本酒を商品化に成功
  8. 藤原・守谷反応 Fujiwara-Moritani Reaction
  9. 野副鉄男 Tetsuo Nozoe
  10. クラプコ脱炭酸 Krapcho Decarboxylation

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

転職を成功させる「人たらし」から学ぶ3つのポイント

転職活動を始めた場合、まずは自身が希望する職種、勤務地、年収などの条件を元にインターネットで求人を検…

mRNAワクチン(メッセンジャーRNAワクチン)

病原体のタンパクをコードしたmRNAをベースとしたワクチン。従来のワクチンは、弱毒化・不活化した病原…

第139回―「超高速レーザを用いる光化学機構の解明」Greg Scholes教授

第139回の海外化学者インタビューはグレッグ・ショールズ教授です。トロント大学化学科(訳注:現在はプ…

分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】

群論を学んでいない人でも「ある分子の対称性が高い」と直感的に言うことはできるかと思います。しかし分子…

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

第138回の海外化学者インタビューはドナ・ブラックモンド教授です。2009年12月現在、インペリアル…

Chem-Station Twitter

PAGE TOP