[スポンサーリンク]

化学者のつぶやき

エチレンを離して!

[スポンサーリンク]

フロンティア軌道論とは、反応に関与する軌道の位相・対称性・電子密度によって分子間反応が支配されていることを説明する量子化学であり、Roald Hoffmann氏福井謙一氏らは、この理論を確立した業績によって1981年にノーベル賞を受賞しています。

rk20120108toc.gif

またWoodward-Hoffmann則(経験則)は、このフロンティア軌道論を基に提唱されています。

1825年にツァイゼ塩(Zeise’s salt:K[Cl3Pt(η2-H2C=CH2)])が発見されて以来[1]、これまでに多くの遷移金属-アルケンπ錯体が合成されており、これらは様々な触媒反応における鍵化合物であることがわかっています。これら金属中心へのエチレンの配位は可逆的で、遷移金属-エチレン間における電子授受の絶妙なバランスにより成り立っています。

一方、室温下でエチレンと可逆的な付加脱離反応を示す有機化合物は、これまで報告されていませんでした。そこで、最近発表された二つの論文をご紹介したいと思います。
まず一つ。
Yang Peng, Bobby D. Ellis, Xinping Wang, James C. Fettinger, Philip P. Power, Science 2009, 325, 1668. DOI: 10.1126/science.1176443
Distannyne 1と可憐なエチレンガスを室温下・1気圧で反応させると、反応は速やかに進行し、エチレン2分子が付加した[2.2.0]ビシクロ体 2が得られます。生成物は異なる場合がありますが、実はここまでは、他の高周期アルキン類縁体でも以前に報告されている反応です[2]。
ところが2は、真空引き(もしくは加熱)すると1を再生するという点で、他の類縁体とは異なる性質を示します。
即ちこの反応、形式上、可逆的な[2+2]環化付加反応を達成しているわけです。
なんだそれだけ、と一瞬思うかもしれませんが、マイルドな条件下でのレトロ反応は非常に重要です。(この時、ふたつのH2C-CH2部位が「エチレン」として再生しているのかは疑問ですが)
rk201201081.gif
(ORTEP図は論文より引用)
少しだけポイントを。
(a) “ウッドワード・ホフマン則(経験則)・フロンティア軌道論(理論)“に従って、炭素の系では同条件下でこのような[2+2]環化付加反応(及びレトロ反応)は起こりません
→ HOMO(エチレン)-LUMO(Distannyne)の[2+1]軌道相互作用から反応が始まっている。
(b) Ph基で簡略化したモデル化合物に対する理論計算では、同可逆反応はより困難であると予想
→ 嵩高いAr基による環歪みが効いている。
(c) 同じAr基でもGeの系で可逆反応は起こらない
→ より弱い(長い)Sn-C結合がレトロ反応を可能にしている。
(d) 新しいDistannyne合成法でもある。
実際の実験の様子(緑:Distannyne。黄色:ビシクロ[2.2.0]化合物)
見た目的にも楽しい反応ですね。
もう一つがこちら。
Ricardo Rodriguez, David Gau, Tsuyoshi Kato,* Nathalie Saffon-Merceron, Abel De Czar, Fernando P. Cosso, and Antoine Baceiredo*. Angew. Chem. Int. Ed. 2011, 50, 10414. DOI: 10.1002/anie.201105097.
ホスホニウム-シライリド 3とエチレンを低温下、1~10気圧で反応させると、シリラン 4が得られます。
シリレンとアルケン/アルキンから三員環が得られる類似の反応は知られていますが [3]、上述の反応では、エチレンの圧力を下げる(もしく室温まで昇温する)と 3が再生します。
rk201201082.gif
(ORTEP図は論文より引用)
この反応では、リン上の置換基をPh基に変えると、レトロ反応が起こらなくなります。
(またケイ素上の置換基をPhからHにすると、置換エチレンの場合、ヒドロシリル化が室温下でおこります[4])。
先述したとおり、これらの挙動は、これまでは遷移金属でしか観測されていなかったもの。(*生成物は厳密にはDewar-Chattモデルのようなπ配位化合物とは異なりますが)
分子の立体・電子の状態を制御し、「反応前後のフロンティア軌道をイメージすることで」金属なしでも類似の反応を見い出せる、ということでしょう。
ご存知の通り、有機分子を使って小分子を活性化する、というのは近年の流行りです。
が、いくつかの例を除いて、ずばり壁にぶち当たっている点は、「活性化したのちに次のステップへ展開できていないこと」だと感じています。この分野で次の段階へすすむ手掛かりとなるのが、反応「」の分子軌道状態を見据えた分子設計、かもしれません。
フロンティア軌道という基礎中の基礎に、もう一度目を向けてみる価値は十二分にあると思います。
そのノウハウが蓄積された先には、金属同様もしくはそれ以上の触媒能を持つ有機分子開発へ繋がると期待できます。
参考文献
[1] W. C. Zeise, Overs. K. Dan. Vidensk. Selsk. Forh. 1825, 13.
[2] Selected: (a) N. Wiberg, S. K. Vasisht, G. Fischer, P. Meyer, Z. Anorg. Allg. Chem. 2004, 630, 1823, DOI: 10.1002/zaac.200400177.
(b) C. Cui, M. M. Olmstead, J. C. Fettinger, C. H. Spikes, P. P. Power, J. Am. Chem. Soc. 2005, 127, 17530, DOI: 10.1021/ja055372s.
(c) Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 1023, DOI:10.1021/ja057205y.
[3] (a) Dong Ho Pae, Manchao Xiao, Michael Y. Chiang, Peter P. Gaspar, J. Am. Chem. Soc. 1991, 113, 1281, DOI: 10.1021/ja00004a031.
related:(b) Lawrence R. Sita* and Richard D. Bickerstaff, J. Am. Chem. Soc. 1988, 110, 5208, DOI: 10.1021/ja00223a059.
[4] R. Rodriguez, D. Gau, Y. Contie, T. Kato,* N. Saffon-Merceron, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 11492, DOI: 10.1002/anie.201105639.
関連書籍

 

関連記事

  1. ここまでできる!?「DNA折り紙」の最先端 ① ~入門編~
  2. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  3. 【書籍】理系のための口頭発表術
  4. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を…
  5. これからの理系の転職について考えてみた
  6. 分取薄層クロマトグラフィー PTLC (Preparative …
  7. 第5回慶應有機化学若手シンポジウム
  8. 既存の農薬で乾燥耐性のある植物を育てる

注目情報

ピックアップ記事

  1. 【書籍】文系でも3時間でわかる 超有機化学入門: 研究者120年の熱狂
  2. MEDCHEM NEWS 32-3号「シン・メディシナルケミストリー」
  3. アート オブ プロセスケミストリー : メルク社プロセス研究所での実例
  4. トムソン:2008年ノーベル賞の有力候補者を発表
  5. 合格体験記:知的財産管理技能検定~berg編~
  6. 無機材料ーChemical Times 特集より
  7. NaHの水素原子の酸化数は?
  8. 熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-
  9. 給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~
  10. Skype英会話の勧め

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP