[スポンサーリンク]

化学者のつぶやき

エチレンを離して!

[スポンサーリンク]

フロンティア軌道論とは、反応に関与する軌道の位相・対称性・電子密度によって分子間反応が支配されていることを説明する量子化学であり、Roald Hoffmann氏福井謙一氏らは、この理論を確立した業績によって1981年にノーベル賞を受賞しています。

rk20120108toc.gif

またWoodward-Hoffmann則(経験則)は、このフロンティア軌道論を基に提唱されています。

1825年にツァイゼ塩(Zeise’s salt:K[Cl3Pt(η2-H2C=CH2)])が発見されて以来[1]、これまでに多くの遷移金属-アルケンπ錯体が合成されており、これらは様々な触媒反応における鍵化合物であることがわかっています。これら金属中心へのエチレンの配位は可逆的で、遷移金属-エチレン間における電子授受の絶妙なバランスにより成り立っています。

一方、室温下でエチレンと可逆的な付加脱離反応を示す有機化合物は、これまで報告されていませんでした。そこで、最近発表された二つの論文をご紹介したいと思います。
まず一つ。
Yang Peng, Bobby D. Ellis, Xinping Wang, James C. Fettinger, Philip P. Power, Science 2009, 325, 1668. DOI: 10.1126/science.1176443
Distannyne 1と可憐なエチレンガスを室温下・1気圧で反応させると、反応は速やかに進行し、エチレン2分子が付加した[2.2.0]ビシクロ体 2が得られます。生成物は異なる場合がありますが、実はここまでは、他の高周期アルキン類縁体でも以前に報告されている反応です[2]。
ところが2は、真空引き(もしくは加熱)すると1を再生するという点で、他の類縁体とは異なる性質を示します。
即ちこの反応、形式上、可逆的な[2+2]環化付加反応を達成しているわけです。
なんだそれだけ、と一瞬思うかもしれませんが、マイルドな条件下でのレトロ反応は非常に重要です。(この時、ふたつのH2C-CH2部位が「エチレン」として再生しているのかは疑問ですが)
rk201201081.gif
(ORTEP図は論文より引用)
少しだけポイントを。
(a) “ウッドワード・ホフマン則(経験則)・フロンティア軌道論(理論)“に従って、炭素の系では同条件下でこのような[2+2]環化付加反応(及びレトロ反応)は起こりません
→ HOMO(エチレン)-LUMO(Distannyne)の[2+1]軌道相互作用から反応が始まっている。
(b) Ph基で簡略化したモデル化合物に対する理論計算では、同可逆反応はより困難であると予想
→ 嵩高いAr基による環歪みが効いている。
(c) 同じAr基でもGeの系で可逆反応は起こらない
→ より弱い(長い)Sn-C結合がレトロ反応を可能にしている。
(d) 新しいDistannyne合成法でもある。
実際の実験の様子(緑:Distannyne。黄色:ビシクロ[2.2.0]化合物)
見た目的にも楽しい反応ですね。
もう一つがこちら。
Ricardo Rodriguez, David Gau, Tsuyoshi Kato,* Nathalie Saffon-Merceron, Abel De Czar, Fernando P. Cosso, and Antoine Baceiredo*. Angew. Chem. Int. Ed. 2011, 50, 10414. DOI: 10.1002/anie.201105097.
ホスホニウム-シライリド 3とエチレンを低温下、1~10気圧で反応させると、シリラン 4が得られます。
シリレンとアルケン/アルキンから三員環が得られる類似の反応は知られていますが [3]、上述の反応では、エチレンの圧力を下げる(もしく室温まで昇温する)と 3が再生します。
rk201201082.gif
(ORTEP図は論文より引用)
この反応では、リン上の置換基をPh基に変えると、レトロ反応が起こらなくなります。
(またケイ素上の置換基をPhからHにすると、置換エチレンの場合、ヒドロシリル化が室温下でおこります[4])。
先述したとおり、これらの挙動は、これまでは遷移金属でしか観測されていなかったもの。(*生成物は厳密にはDewar-Chattモデルのようなπ配位化合物とは異なりますが)
分子の立体・電子の状態を制御し、「反応前後のフロンティア軌道をイメージすることで」金属なしでも類似の反応を見い出せる、ということでしょう。
ご存知の通り、有機分子を使って小分子を活性化する、というのは近年の流行りです。
が、いくつかの例を除いて、ずばり壁にぶち当たっている点は、「活性化したのちに次のステップへ展開できていないこと」だと感じています。この分野で次の段階へすすむ手掛かりとなるのが、反応「」の分子軌道状態を見据えた分子設計、かもしれません。
フロンティア軌道という基礎中の基礎に、もう一度目を向けてみる価値は十二分にあると思います。
そのノウハウが蓄積された先には、金属同様もしくはそれ以上の触媒能を持つ有機分子開発へ繋がると期待できます。
参考文献
[1] W. C. Zeise, Overs. K. Dan. Vidensk. Selsk. Forh. 1825, 13.
[2] Selected: (a) N. Wiberg, S. K. Vasisht, G. Fischer, P. Meyer, Z. Anorg. Allg. Chem. 2004, 630, 1823, DOI: 10.1002/zaac.200400177.
(b) C. Cui, M. M. Olmstead, J. C. Fettinger, C. H. Spikes, P. P. Power, J. Am. Chem. Soc. 2005, 127, 17530, DOI: 10.1021/ja055372s.
(c) Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 1023, DOI:10.1021/ja057205y.
[3] (a) Dong Ho Pae, Manchao Xiao, Michael Y. Chiang, Peter P. Gaspar, J. Am. Chem. Soc. 1991, 113, 1281, DOI: 10.1021/ja00004a031.
related:(b) Lawrence R. Sita* and Richard D. Bickerstaff, J. Am. Chem. Soc. 1988, 110, 5208, DOI: 10.1021/ja00223a059.
[4] R. Rodriguez, D. Gau, Y. Contie, T. Kato,* N. Saffon-Merceron, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 11492, DOI: 10.1002/anie.201105639.
関連書籍

 

関連記事

  1. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数…
  2. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は…
  3. ノーベル化学賞を担った若き開拓者達
  4. 比色法の化学(後編)
  5. ケムステイブニングミキサー2018へ参加しよう!
  6. 化学者のためのエレクトロニクス講座~有機半導体編
  7. ハプロフィチンの全合成
  8. NMR Chemical Shifts ー溶媒のNMR論文より

注目情報

ピックアップ記事

  1. ワサビ辛み成分受容体を活性化する新規化合物
  2. リチャード・ゼア Richard N. Zare
  3. キラルな八員環合成におすすめのアイロン
  4. ダイヤモンドは砕けない
  5. グァンビン・ドン Guangbin Dong
  6. 高知大が新エコ材料開発へ 産官共同プロジェクト
  7. サブフタロシアニン SubPhthalocyanine
  8. ケミカルタイムズ 紹介記事シリーズ
  9. 目指せPlanar!反芳香族性NIR色素の開発
  10. 日本にあってアメリカにないガラス器具

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー