[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~無線の歴史編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は、昨今話題の5G通信と基礎技術を理解する前置きとして、無線通信の歴史をご紹介します。

黎明期の無線通信

無線通信とは、導線などによらない通信形態の総称で、主として電波を用いた手法を指します(至近距離であれば赤外線等も用いられます)。

そもそもの発端である電波の発見は、1888年にハインリヒ・ヘルツによって為されました。当初は利用価値に乏しかった電波ですが、1895年にグリエルモ・マルコーニが通信技術である無線電信(無電)への応用を確立したことで状況は一変します。

マルコーニが発明した通信装置(画像:Wikipedia

20世紀初頭、遠距離で情報を伝達する手段としては海底ケーブルを利用した有線通信が主でした。列強諸国は自国や植民地を結ぶ海底ケーブルの敷設に奔走しましたが、依然としてその権益の大半は超大国たる大英帝国が手中に収めていました。

1901年時点での海底ケーブル網。イギリス領を起点としたものが大半です(画像:Wikipedia

1914年に第一次世界大戦が勃発し、英独間が戦争状態に突入すると、海軍力でドイツを圧倒するイギリスはドイツ資本による海底ケーブルを寸断していきました。

こうしてドイツはイギリスの息のかかった「国際」ケーブルへの依存を深め、最終的には暗号を解読されてしまいます。外交上の機密電報を解読されたこと(ツィンメルマン事件によるアメリカ参戦)も一因となり、ドイツ帝国は敗北、崩壊しました。

ヴェルサイユ条約を突き付けられ、署名させられるドイツ代表(手前 画像:Wikipedia

これを契機に海底ケーブルでの通信の脆弱性が露呈すると、それに取って代わる通信手段としての無線の真価が認識されるようになり、徐々に海底ケーブルの役目を代替する形で台頭していきました。とはいえこの時点ではモールス信号に代表される無線電信で単位時間あたりに送信できるデータ量は限られたものであり、送受信機も大掛かりなもので、とても人が手に持って使えるようなサイズではありませんでした。次の技術革新を促したきっかけも、皮肉なことに戦争でした。

第二次大戦と無線技術の躍進

符号のみならず音声を伝送できる変調技術(AM/FMラジオの原理です)が開発され、電離層での反射によって遠方まで効率よく届き、従来の長波・中波よりも通信速度を向上できる短波が発見されると、各国はそれを利用した通信技術の向上に鎬を削ります。

雪辱に燃える敗戦国ドイツもその例に漏れず、無線機の小型化と信頼性向上に努めました。そしてついには全戦車に高性能な無線機を搭載、戦闘中も互いに緊密に連携できるよう工夫を凝らしました。

そして、機動力に富む戦車のみの部隊を編成し、迅速な意思決定を無線でリアルタイムに共有することで、驚異的な速さでの進撃を可能としました。電撃戦の完成です。

対する英仏軍(特にフランス)はせっかく大量に配備した戦車を歩兵の随伴に割いてしまいました。さらには十分な無線機を持っておらず、司令部に電話すらなかったために、情報伝達を伝令兵に依存する有様でした。

その間にもアルデンヌの独仏国境を突破したドイツ軍の戦車部隊は兵力で勝る連合軍を蹂躙しながら全速力で侵攻し、わずか10日で英仏海峡に到達、さらに4日で包囲網を狭め、北フランスからベネルクスにかけての連合軍主力をダンケルクに追い詰めるという、軍事史上まれにみる成功を収めました。これは、フランスの伝令兵がパリの司令部と戦場を数往復する間に、既に勝敗が決定づけられていたことを意味します。古来欧州最強と謳われていたフランスは、わずか一ヶ月であえなく降伏します。

無線を駆使したドイツの猛攻の前に、フランスは敗北しました(画像:Wikipedia

イメージと異なるかもしれませんが、第二次世界大戦初期のドイツ軍の戦車は連合軍のものと比して、とりたてて優れていると言えるものではありませんでした。実際にドイツ軍の主力の一つであったII号戦車はイギリス軍のMk.II マチルダ戦車には歯が立たず、反撃を受けて窮地に立たされる局面(アラスの戦い)もありました。

すなわち、緒戦におけるドイツ軍の華々しい勝利は必ずしも兵器の性能によるものではなく、無線の発展が可能とした新戦術によってもたらされたものとも言えるのです。

その数年後、無線の重要性を認識しドイツ軍の戦法を体得した連合軍は反撃に転じ、なかでもソ連軍は大戦中盤から主力戦車T-34への無線機配備を急ぎ、ついにはドイツのお株を奪う電撃戦(バグラチオン作戦)を成功させてロシア本土やカフカス地方から北欧・東欧に至る広大な領土を奪回、戦後のユーラシア大陸を席巻することとなります。

ベルリンの帝国議事堂を制圧したソ連兵(画像:Flickr

アメリカ軍も無線を駆使した戦場での情報共有に心血を注ぎます。ドイツの成功を目の当たりにした直後から画期的な小型無線機(SCR-536)の開発を進め、1941年の参戦前には“Walkie-Talkie”として量産に踏み切ります。これは片手で操作でき、耳に当てて会話することができるもので、(やや大き過ぎる感も否めませんが)トランシーバーの先駆けともいえるものでした。こうして勝利をつかんだアメリカでは戦後の1946年、専用回線を必要とするトランシーバーを、民間の公衆電話回線を用いることで民間転用したMTSサービスを開始しました。

米軍が実用化したWalkie-Talkie(画像:Wikipedia

通信規格の変遷

移動体通信が本格化するにあたり、通信規格の整備が始まりました。最初の通信規格は1980年代に全盛を迎えた1世代移動通信システム(1Gと呼ばれるもので、アナログ(FM)方式によるものでした。これは通話のみを想定したもので、データ通信は不可能でした。

次いで、1993年に2Gが登場します。これははじめてデジタル方式で「パケット」を送受信することによるデータ通信を可能としたもので、800 MHz帯が主に使用されました。とはいえその通信速度は現在に比べると格段に遅く、LTEの数千分の一程度にとどまりました。

続いて2000年ごろから3Gの運用が始まります。より周波数が高く帯域幅の広い2 GHzを割り当て、変調方式にも工夫を凝らしたこともあって数十Mbpsの通信速度を実現しました。この3Gの普及により、携帯端末でも実用的な時間内でWebサイトを閲覧することが可能となりました。

そして2020年現在、日本国内で広く一般に提供されている最速の通信サービスが4Gです。3.4 GHz帯の利用により3Gよりも一桁ほど高速な通信速度を確保し、動画の閲覧なども容易になりました。現在国内で提供されている通信サービスはほとんど3Gと4Gによるものです。

812492_m

812492_m

現在は3G/4Gが主流です(画像:photo AC

5G時代の幕明け

無線の発見から現在主流の3G/4Gに至る通信技術の発展を追ってきましたが、それでは近頃話題の5Gは何が異なるのでしょうか。

5Gではおおむね1 Gbpsを超える超高速での通信を実現するほか、通信のタイムラグである遅延を大幅に減らすことや膨大な量のデバイスをネットワークに接続することが可能となります。低遅延化によりロボットの遠隔操作や遠隔手術、自動運転などにも応用が見込まれるほか、多数同時接続によって一層のIoT化が可能となります。これが従来の通信規格と大きく異なる点です。

これを実現するために、5Gでは3.5 GHz帯、4.5 GHz帯に加え、極めて高周波の28 GHz帯が割り当てられています。

今回は現代に至る無線通信の発展史と5Gの進歩性をまとめました。次回は5Gに必要な素材について特集しますのでお楽しみに!

関連リンク

https://www.hummingheads.co.jp/reports/closeup/1409/140901_01.html#3

https://xtech.nikkei.com/atcl/nxt/column/18/00138/012300220/

https://xtech.nikkei.com/atcl/nxt/column/18/01329/060500002/

https://xeex-products.jp/extelligence/5g-will-change-manufacturing/

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 海外で働いている僕の体験談
  2. 水素社会実現に向けた連続フロー合成法を新開発
  3. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  4. 製薬業界における複雑な医薬品候補の合成の設計について: Natu…
  5. 宇宙で結晶化!? 創薬研究を支援する結晶生成サービス「Kira…
  6. 国内初のナノボディ®製剤オゾラリズマブ
  7. 年に一度の「事故」のおさらい
  8. 日本語で得る学術情報 -CiNiiのご紹介-

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授
  2. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  3. マンチニールの不思議な話 ~ウィリアム・ダンピアの記録から~
  4. 世界のエリートが今一番入りたい大学 ミネルバ
  5. 白金イオンを半導体ナノ結晶の内外に選択的に配置した触媒の合成
  6. 「女性用バイアグラ」開発・認可・そして買収←イマココ
  7. 光触媒の力で多置換トリフルオロメチルアルケンを合成
  8. 日米の研究観/技術観の違い
  9. 有機合成化学協会誌2021年5月号:『有機合成のブレークスルー』合成反応の選択性制御によるブレークスルー
  10. カーボンナノチューブ /carbon nanotube (CNT)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP