[スポンサーリンク]

化学者のつぶやき

教科書を書き換えるか!?ヘリウムの化合物

[スポンサーリンク]

18族元素、すなわち貴ガス元素の化合物があるってご存じでしたか?

そりゃあケムステの読者の皆様でしたら知ってましたよね。筆者が高校生くらいの時は、希ガス元素は化合物を作らないと教え込まれた気がします。でも最近の高校の化学の教科書では希ガス元素の化合物もあるということが明記されているんですよね。ただ、紹介されるのはキセノンの化合物くらいでして、ヘリウムネオンの化合物はみつかっていないと明記されている教科書もあります。

しかし、どうやらヘリウムの「化合物」と言える物質が新たに見いだされました。よって教科書を書き換える必要が出てきた気がします(貴ガスだけに)。というわけで、今回のポストでは貴ガスの化合物について少し紹介していきましょう。

ここに実教出版の高校「化学」の教科書がありましたので希ガスの項を見てみます。

希ガス原子の電子配置は、荷電子0とみなされる。他の原子に比べて極めて安定しており、他の原子と結合しにくく、化合物をつくりにくい。

とあり、欄外には

キセノンの化合物XeF2, XeO4など、またKr, Arにも化合物が知られているが、ヘリウム、ネオンには化合物は見つかっていない。

という記述があります。

そうなんですね。キセノンにはフッ化物、酸化物の他にもXeF[PtF5]などの化合物(これが最初に発見された希ガスの化合物です[1])が、クリプトンにもKrF2やKr(OTeF5)2などが知られています。ラドンにもフッ化物はあるようですが、放射性のため解析が困難だそうです。

アルゴンの化合物はというと少し微妙になってきましてHArFが2000年に初めて報告されました。[2]他には水やヒドロキノンとの包接化合物(メタンハイドレートなどと同じ)が知られています。

クリプトンやキセノンは空のd軌道がありますので、その辺りが化学結合に関与するんでしょうか。(2017.2.11追記あり)アルゴンになるとそういった電子のやりとりが困難になるので、化合物を作るのが困難になってきます。極めつけがネオンとヘリウムで、ご存じの通り、最外殻が全て埋まっています。ヘリウムのイオン化エネルギーは24.59 eVと全元素の中で最大で、最もイオンになりにくいことになります。

 

では、本当にヘリウム、ネオンの化合物は無いのでしょうか?実は既にヘリウムやネオンでも「化合物」と呼ばれるものはありました。例えば、He@C60やNe@C60のように、フラーレンの中に原子を閉じ込めた物質は有名かと思います。

フラーレンに捕まった希ガス(画像はWikipediaより)

また、LiHe, He2のような分子間に働く弱い力であるvan der Waals力によって微妙に結びついた、van der Waars分子と呼ばれるものです。また、He2*のような高エネルギー状態になっている分子(Rydberg分子)も確認されています。特に、van der Waars分子については、ヘリウム、ネオン問わず多くの希ガス化合物が観測されています。

しかし、このvan der Waars力というのはかなり弱い結合ですので、イメージとしてはなんとなく分子が寄り添っているような感じで、「化学結合」しているとはお世辞にも言えないものですよね。

そんな中今回、中国、ロシア、米国など様々な研究者たちがNature Chemistry誌に報告した物質は、真の意味でヘリウムの化合物と呼んでいい気がする(しつこい)、ものです。

“A stable compound of helium and sodium at high pressure”

Dong, X.; Oganov, A. R.; Goncharov, A. F.; Stavrou, E.; Lobanov, S.; Saleh, G.; Qian, G.-R.; Zhu, Q.; Gatti, C.; Deringer, V. L.; Dronskowski, R.; Zhou, X.-F.; Prakapenka, V. B.; Konôpková, Z.; Popov, I. A.; Boldyrev, A. I.; Wang, H.-T.

Nature Chem. 2017 AOP DOI: 10.1038/nchem.2716

この論文は、物理学の分野では一般的によく知られている論文のプレプリントサーバーarXivに2013年に投稿された論文(arXiv:1309.3827)が基になっています。

彼らの手法は論文タイトルそのままでして、ヘリウムとナトリウムの単体を入れた容器に1600 bar (約1600気圧)のヘリウムで満たし、ダイヤモンドアンビルセル(diamond anvil cell)と呼ばれる高圧実験に用いられる機器を用いて120 GPa以上の高圧状態にしてレーザーで加熱するというものです。

その結果、

2Na + He → Na2He

という単純明快な化学反応により、Na2Heを合成し、その存在をX線回折によって確認するにいたりました。

このヘリウムとナトリウムの組み合わせですが、USPEX (Universal Structure Predictor: Evolutionary Xtallography)というアルゴリズムを用いて予測したところ、理論的に存在できることが明らかとなっており、論文に記載されている今回の実験値ともよく符合しています。また、理論的にはNa2HeOも存在しうることを見いだしています。

問題はこの物質が化合物と呼べる代物かどうかです。単にナトリウムとヘリウムがごちゃ混ぜになっているだけのものではないデータを示しており、その構造はNa8の立方体の中に4つのHeが入り込んだ形になっていました。

ピンクがNa、グレーがHe原子(図は論文より抜粋)

では、電子はどうなってるの?ということですが、ヘリウムの最外殻電子は2個、ナトリウムは1個ですから、どうやっても結合できなそうです。その答えは電子2個がさらに空間を占めていて、平均すると、Naに+0.6の電荷が、ヘリウムに約-0.15の電荷、電子2個が約-1.1の電荷を担っているという結果でした。

300 GPaにおけるNa, He, 2eの電子局在関数(Electron Localization Function)のプロット(図は論文より抜粋)

電荷に関してはかなり分かりにくいかと思いますが、上図で見ると多少わかりやすいかと思います。NaとHe、そして2eがそれぞれの空間に押し込められているような状態で存在しています。正味8中心2電子結合になります。

 

無理矢理狭いところに押し込んで潰しただけじゃんと言えばそれまでなのでしょうが、これならばvan der Waars力でなんとなくではなく、HeとNaが立派な化学結合をしているとしてよいのではないでしょうか。という訳で、今回の研究が幅広く認められれば、高校の教科書を書き換える必要があるのではないかという、文字通り小さい反応ですが大きな発見である気がするのです(本当にしつこい)。

ついでに高校の教科書も希ガス(rare gas)を貴ガス(noble gas)にした方がいい気がします。[3]

 

2017.2.11追記

さかのうえ様からのご指摘を受けまして、調べ直してみました。筆者の浅知恵では例えばXeF2でしたらsp3d混成軌道で丁度説明できるなと思っていたのですが(Paulingもそう考えており、一時そのように考えられていた時期もあるようです)、これは現在では主流の考えではないようです。例えば、

Braïda, B; Hiberty, P. C. Nature Chem. 5, 417 (2013).   doi:10.1038/nchem.1619

によると、XeF2ではsp3d軌道の貢献は11%ほどであり、電荷移動型結合(charge-shift bonding)が主たる結合の役割をしていて、ご指摘の通りRundle–Pimentelモデルすなわち三中心四電子結合で結合していると考えるのが妥当との計算がなされています。

調査を怠っていたことを深くお詫び申し上げます。

 

関連文献

[1] Bartlett, N. Proc. Chem. Soc. 197236 (1962). DOI: 10.1039/PS9620000197

[2] Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 406, 874876 (2000). DOI: 10.1038/35022551

[3] 日本化学会 高等学校化学で用いる用語に関する提案(1) 

関連書籍

ペリプラノン

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. コロナウイルスが免疫システムから逃れる方法(1)
  2. 不安定な合成中間体がみえる?
  3. ケージ内で反応を進行させる超分子不斉触媒
  4. 『Ph.D.』の起源をちょっと調べてみました② 化学(科学)編
  5. 研究室でDIY!割れないマニホールドをつくろう・改
  6. 可視光で芳香環を立体選択的に壊す
  7. 細胞をつなぐ秘密の輸送路
  8. 光触媒ラジカルカスケードが実現する網羅的天然物合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マラカイトグリーン /Malachite Green
  2. 野依 良治 Ryoji Noyori
  3. スピノシン Spinosyn
  4. 第一手はこれだ!:古典的反応から最新反応まで2 |第7回「有機合成実験テクニック」(リケラボコラボレーション)
  5. 日本国際賞―受賞化学者一覧
  6. シャンパンの泡、脱気の泡
  7. キャリー・マリス Kary Banks Mullis
  8. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組み込む
  9. ブルース・ギブ Bruce C. Gibb
  10. フリードレンダー キノリン合成 Friedlander Quinoline Synthesis

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬

有機合成化学協会が発行する有機合成化学協会誌、2020年9月号がオンライン公開されました。完…

第118回―「糖鎖のケミカルバイオロジーを追究する」Carolyn Bertozzi教授

第118回の海外化学者インタビューは、キャロライン・ベルトッツィ教授です。カリフォルニア大学バークレ…

Chem-Station Twitter

PAGE TOP