[スポンサーリンク]

化学者のつぶやき

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

[スポンサーリンク]

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール(PEG)

水に溶ける、毒性が少ない、免疫原性が少ない、反応しづらく安定、末端加工もしやすい、分子サイズも様々に入手可能、しかも安価・・・という、生体関連応用にとって理想的な特性がこれでもかというほど詰め込まれている分子です。筆者もタンパク質修飾プロジェクトを始めて以来、もの凄く頻繁に使うようになりました。

一方で精製に関しては考えることが多くあります。水に溶けやすくなる分、分液やカラムなどでロストしやすくなってしまうのです。モノがゲル状になってしばしば取扱困難になることもあります。

先日報告されたOPRD誌の論文で、PEG分子の効率的な精製・単離法が紹介されていましたので、今回ご紹介します。

“Complexation of Polyethyleneglycol Containing Small Molecules with Magnesium Chloride as a Purification and Isolation Strategy”
Zheng, B.*; Li, J.; Pathirana, C.; Qiu, S.; Schmidt, M. A.; Eastgate, M. D.* Org. Process Res. Dev. 2021, doi:10.1021/acs.oprd.1c00174

実験手順

  1. PEG化合物のジクロロメタン(DCM)溶液に対し、3当量の塩化マグネシウム(MgCl2)、5当量のテトラヒドロフラン(THF)を加えて、8-16時間室温で攪拌する。
  2. tBuOMe (MTBE)を1時間かけて加え、2~3時間攪拌する
  3. ろ過してDCM/MTBE(1/1)溶液で洗浄し、PEG化合物-MgCl2錯体を得る
  4. DCM/水で処理すればMgCl2の脱錯も可能

原理

PEGが金属と錯形成できる性質を利用しています。クラウンエーテルと同じような話で、至極単純な理屈です。とはいえ錯形成効率が悪い、錯形成時にべたくと扱いづらいなど実用上の課題があったようで、そこをいろいろテコ入れしています。

初期スクリーニングにおいては、化合物1と様々な金属化合物を混合し、錯体としての回収率をHPLC評価しています。

傾向として分かったのは下記の通り。

  • 毒性が低く、安価で、混合時によく懸濁するマグネシウム・カルシウム塩が優れる
  • 酸素親和性/ルイス酸性の強い亜鉛やチタンはガム状になって回収率がさがる
  • ランタニド金属はコスト高であり毒性が懸念される
  • MgBr2・CaCl2は回収率が良い一方、PEG錯体の吸湿性が高く取扱困難
  • MgCl2が回収率もそこそこ良好、PEG錯体が低吸湿性、毒性も低く、分子量も小さく、安価なので最適
  • ルイス塩基性のないジクロロメタンを錯形成溶媒に使うと回収率に優れる。このときTHFを少量加えると錯形成効率が上がる

実施例

TFAによるtBu基の除去、精製を例に紹介します。

プロトコル図は冒頭論文より引用

反応終了後、クエン酸ナトリウム水溶液で洗浄してまずTFAを除去します。その後、本法で錯形成を行い、tBuOMe (MTBE)で洗浄、ろ過してMgCl2錯体を得ます。余計なFmoc系副生物は、この手順下にろ液に行き、化合物純度が86.1%→98.5%に向上します。このプロトコルは20グラムスケールで実施可能です。その後、DCM/水溶媒で処理することで脱錯も可能ですが、MgCl2錯体のまでもアミド縮合反応に用いることができます。化合物1は粘度の高い油状物質である一方、MgCl2錯体にすると固体になり、ハンドリング面でも改善されています。

様々なPEG化合物に対して同様の精製法は適用可能ですが、当量などの最適化が多少いるようです。N3基は耐えますが、tBu基やBoc基は一部除去されることがわかっており、使用時には注意が必要です(ピリジンなど少量のアミン系塩基を添加しておくと改善することが述べられています)。歪みアルキンはこの条件だと損壊されるようで、適用外となっています。

終わりに

これほど簡便に行えるPEG化合物精製法は、そもそも報告が存在しないようです。生体関連化学の発展著しいトレンドにあって、簡便PEG精製法の意義はいよいよ高まってくると思われます。今後とも優れた手法が開発されていくことを期待したいですね!

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成化学協会誌2022年11月号:英文特別号
  2. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  3. エナンチオ選択的α-アルキル-γ-ラクタム合成
  4. 企業における研究開発の多様な目的
  5. 君には電子のワルツが見えるかな
  6. Merck Compound Challengeに挑戦!【エント…
  7. そうだ、アルミニウムを丸裸にしてみようじゃないか
  8. 規則的に固定したモノマーをつないで高分子を合成する

注目情報

ピックアップ記事

  1. 薬価4月引き下げ 製薬各社は「アジア」「非医薬」に活路
  2. 植村酸化 Uemura Oxidation
  3. 位置選択性の制御が可能なスチレンのヒドロアリール化
  4. IBM,high-k絶縁膜用ハフニウムの特性解析にスパコン「Blue Gene」を活用
  5. 有機化学実験基礎講座、絶賛公開中!
  6. 日本語で得る学術情報 -CiNiiのご紹介-
  7. 酢酸鉄(II):Acetic Acid Iron(II) Salt
  8. (-)-Calycanthine, (+)-Chimonanthine,(+)-Folicanthineの全合成
  9. 名大・山本名誉教授に 「テトラへドロン賞」 有機化学分野で業績
  10. 「優れた研究テーマ」はどう選ぶべき?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP