[スポンサーリンク]

化学者のつぶやき

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

[スポンサーリンク]

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール(PEG)

水に溶ける、毒性が少ない、免疫原性が少ない、反応しづらく安定、末端加工もしやすい、分子サイズも様々に入手可能、しかも安価・・・という、生体関連応用にとって理想的な特性がこれでもかというほど詰め込まれている分子です。筆者もタンパク質修飾プロジェクトを始めて以来、もの凄く頻繁に使うようになりました。

一方で精製に関しては考えることが多くあります。水に溶けやすくなる分、分液やカラムなどでロストしやすくなってしまうのです。モノがゲル状になってしばしば取扱困難になることもあります。

先日報告されたOPRD誌の論文で、PEG分子の効率的な精製・単離法が紹介されていましたので、今回ご紹介します。

“Complexation of Polyethyleneglycol Containing Small Molecules with Magnesium Chloride as a Purification and Isolation Strategy”
Zheng, B.*; Li, J.; Pathirana, C.; Qiu, S.; Schmidt, M. A.; Eastgate, M. D.* Org. Process Res. Dev. 2021, doi:10.1021/acs.oprd.1c00174

実験手順

  1. PEG化合物のジクロロメタン(DCM)溶液に対し、3当量の塩化マグネシウム(MgCl2)、5当量のテトラヒドロフラン(THF)を加えて、8-16時間室温で攪拌する。
  2. tBuOMe (MTBE)を1時間かけて加え、2~3時間攪拌する
  3. ろ過してDCM/MTBE(1/1)溶液で洗浄し、PEG化合物-MgCl2錯体を得る
  4. DCM/水で処理すればMgCl2の脱錯も可能

原理

PEGが金属と錯形成できる性質を利用しています。クラウンエーテルと同じような話で、至極単純な理屈です。とはいえ錯形成効率が悪い、錯形成時にべたくと扱いづらいなど実用上の課題があったようで、そこをいろいろテコ入れしています。

初期スクリーニングにおいては、化合物1と様々な金属化合物を混合し、錯体としての回収率をHPLC評価しています。

傾向として分かったのは下記の通り。

  • 毒性が低く、安価で、混合時によく懸濁するマグネシウム・カルシウム塩が優れる
  • 酸素親和性/ルイス酸性の強い亜鉛やチタンはガム状になって回収率がさがる
  • ランタニド金属はコスト高であり毒性が懸念される
  • MgBr2・CaCl2は回収率が良い一方、PEG錯体の吸湿性が高く取扱困難
  • MgCl2が回収率もそこそこ良好、PEG錯体が低吸湿性、毒性も低く、分子量も小さく、安価なので最適
  • ルイス塩基性のないジクロロメタンを錯形成溶媒に使うと回収率に優れる。このときTHFを少量加えると錯形成効率が上がる

実施例

TFAによるtBu基の除去、精製を例に紹介します。

プロトコル図は冒頭論文より引用

反応終了後、クエン酸ナトリウム水溶液で洗浄してまずTFAを除去します。その後、本法で錯形成を行い、tBuOMe (MTBE)で洗浄、ろ過してMgCl2錯体を得ます。余計なFmoc系副生物は、この手順下にろ液に行き、化合物純度が86.1%→98.5%に向上します。このプロトコルは20グラムスケールで実施可能です。その後、DCM/水溶媒で処理することで脱錯も可能ですが、MgCl2錯体のまでもアミド縮合反応に用いることができます。化合物1は粘度の高い油状物質である一方、MgCl2錯体にすると固体になり、ハンドリング面でも改善されています。

様々なPEG化合物に対して同様の精製法は適用可能ですが、当量などの最適化が多少いるようです。N3基は耐えますが、tBu基やBoc基は一部除去されることがわかっており、使用時には注意が必要です(ピリジンなど少量のアミン系塩基を添加しておくと改善することが述べられています)。歪みアルキンはこの条件だと損壊されるようで、適用外となっています。

終わりに

これほど簡便に行えるPEG化合物精製法は、そもそも報告が存在しないようです。生体関連化学の発展著しいトレンドにあって、簡便PEG精製法の意義はいよいよ高まってくると思われます。今後とも優れた手法が開発されていくことを期待したいですね!

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 未来社会創造事業
  2. 化学研究で役に立つデータ解析入門:回帰分析の応用編
  3. 化学英語論文/レポート執筆に役立つPCツール・決定版
  4. 新規抗生物質となるか。Pleuromutilinsの収束的短工程…
  5. 【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ…
  6. タンパク質を「みる」技術で科学のフロンティアを切り拓く!【ケムス…
  7. エステルをアルデヒドに変換する新手法
  8. ChemDrawの使い方 【基本機能編】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ロルフ・ミュラー Rolf Muller
  2. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal
  3. 化学のためのPythonによるデータ解析・機械学習入門
  4. ボリルアジドを用いる直接的アミノ化
  5. 2007年文化勲章・文化功労者決定
  6. ロッセン転位 Lossen Rearrangement
  7. フッ素のチカラで光学分割!?〜配向基はじめました〜
  8. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  9. 化学企業のグローバル・トップ50が発表【2021年版】
  10. ChemDrawからSciFinderを直接検索!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

トンネル構造をもつマンガン酸化物超微粒子触媒を合成

第409回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 原・鎌田研究室に在籍されて…

第174回―「特殊な性質を持つフルオロカーボンの化学」David Lemal教授

第174回の海外化学者インタビューは、デヴィッド・レマル教授です。ダートマスカレッジ化学科に所属し、…

二核錯体による窒素固定~世界初の触媒作用実現~

Tshozoです。先月このような論文がNature本誌に発表されました。窒素固定と言えばやはり筆…

有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・遺伝子治療・Phaeosphaeride・(−)-11-O-Debenzoyltashironin・(−)-Bilobalide

有機合成化学協会が発行する有機合成化学協会誌、2022年8月号がオンライン公開されました。筆…

生体分子と疾患のビッグデータから治療標的分子を高精度で予測するAIを開発

第 408 回のスポットライトリサーチは、九州工業大学 情報工学府 博士後期課程…

尿酸 Uric Acid 〜痛風リスクと抗酸化作用のジレンマ〜

皆さん、尿酸値は気にしてますか? ご存知の通り、ビールやお肉に豊富に含まれるプリ…

第173回―「新たな蛍光色素が実現する生細胞イメージングと治療法」Marina Kuimova准教授

第173回の海外化学者インタビューは、マリナ・クイモヴァ准教授です。インペリアル・カレッジ・ロンドン…

Biotage Selekt のバリュープライス版 Enkel を試してみた

Biotage の新型自動フラッシュクロマトシステム Selekt のバリュープライ…

【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コー…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP