[スポンサーリンク]

化学者のつぶやき

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

[スポンサーリンク]

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール(PEG)

水に溶ける、毒性が少ない、免疫原性が少ない、反応しづらく安定、末端加工もしやすい、分子サイズも様々に入手可能、しかも安価・・・という、生体関連応用にとって理想的な特性がこれでもかというほど詰め込まれている分子です。筆者もタンパク質修飾プロジェクトを始めて以来、もの凄く頻繁に使うようになりました。

一方で精製に関しては考えることが多くあります。水に溶けやすくなる分、分液やカラムなどでロストしやすくなってしまうのです。モノがゲル状になってしばしば取扱困難になることもあります。

先日報告されたOPRD誌の論文で、PEG分子の効率的な精製・単離法が紹介されていましたので、今回ご紹介します。

“Complexation of Polyethyleneglycol Containing Small Molecules with Magnesium Chloride as a Purification and Isolation Strategy”
Zheng, B.*; Li, J.; Pathirana, C.; Qiu, S.; Schmidt, M. A.; Eastgate, M. D.* Org. Process Res. Dev. 2021, doi:10.1021/acs.oprd.1c00174

実験手順

  1. PEG化合物のジクロロメタン(DCM)溶液に対し、3当量の塩化マグネシウム(MgCl2)、5当量のテトラヒドロフラン(THF)を加えて、8-16時間室温で攪拌する。
  2. tBuOMe (MTBE)を1時間かけて加え、2~3時間攪拌する
  3. ろ過してDCM/MTBE(1/1)溶液で洗浄し、PEG化合物-MgCl2錯体を得る
  4. DCM/水で処理すればMgCl2の脱錯も可能

原理

PEGが金属と錯形成できる性質を利用しています。クラウンエーテルと同じような話で、至極単純な理屈です。とはいえ錯形成効率が悪い、錯形成時にべたくと扱いづらいなど実用上の課題があったようで、そこをいろいろテコ入れしています。

初期スクリーニングにおいては、化合物1と様々な金属化合物を混合し、錯体としての回収率をHPLC評価しています。

傾向として分かったのは下記の通り。

  • 毒性が低く、安価で、混合時によく懸濁するマグネシウム・カルシウム塩が優れる
  • 酸素親和性/ルイス酸性の強い亜鉛やチタンはガム状になって回収率がさがる
  • ランタニド金属はコスト高であり毒性が懸念される
  • MgBr2・CaCl2は回収率が良い一方、PEG錯体の吸湿性が高く取扱困難
  • MgCl2が回収率もそこそこ良好、PEG錯体が低吸湿性、毒性も低く、分子量も小さく、安価なので最適
  • ルイス塩基性のないジクロロメタンを錯形成溶媒に使うと回収率に優れる。このときTHFを少量加えると錯形成効率が上がる

実施例

TFAによるtBu基の除去、精製を例に紹介します。

プロトコル図は冒頭論文より引用

反応終了後、クエン酸ナトリウム水溶液で洗浄してまずTFAを除去します。その後、本法で錯形成を行い、tBuOMe (MTBE)で洗浄、ろ過してMgCl2錯体を得ます。余計なFmoc系副生物は、この手順下にろ液に行き、化合物純度が86.1%→98.5%に向上します。このプロトコルは20グラムスケールで実施可能です。その後、DCM/水溶媒で処理することで脱錯も可能ですが、MgCl2錯体のまでもアミド縮合反応に用いることができます。化合物1は粘度の高い油状物質である一方、MgCl2錯体にすると固体になり、ハンドリング面でも改善されています。

様々なPEG化合物に対して同様の精製法は適用可能ですが、当量などの最適化が多少いるようです。N3基は耐えますが、tBu基やBoc基は一部除去されることがわかっており、使用時には注意が必要です(ピリジンなど少量のアミン系塩基を添加しておくと改善することが述べられています)。歪みアルキンはこの条件だと損壊されるようで、適用外となっています。

終わりに

これほど簡便に行えるPEG化合物精製法は、そもそも報告が存在しないようです。生体関連化学の発展著しいトレンドにあって、簡便PEG精製法の意義はいよいよ高まってくると思われます。今後とも優れた手法が開発されていくことを期待したいですね!

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  2. Newton別冊「注目のスーパーマテリアル」が熱い!
  3. シリリウムカルボラン触媒を用いる脱フッ素水素化
  4. Reaxys Prize 2012ファイナリスト45名発表!
  5. ケムステSlack、開設二周年!
  6. 三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立…
  7. 神経細胞の伸長方向を光で操る
  8. カンブリア爆発の謎に新展開

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光親和性標識法の新たな分子ツール
  2. <アスクル>無許可で危険物保管 消防法で義務づけ
  3. カシノナガキクイムシ集合フェロモンの化学構造を解明
  4. 「サリドマイド」投与医師の3割が指針”違反”
  5. スクリプス研究所
  6. カルバメート系保護基 Carbamate Protection
  7. 第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授
  8. 第15回ケムステVシンポジウム「複合アニオン」を開催します!
  9. 導電性ゲル Conducting Gels: 流れない流体に電気を流すお話
  10. マクコーマック反応 McCormack Reaction

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
« 8月   10月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに…)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに…)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP