[スポンサーリンク]

スポットライトリサーチ

高効率・高正確な人工核酸ポリメラーゼの開発

[スポンサーリンク]

第303回のスポットライトリサーチは、星野秀和 博士にお願いしました。

近年注目を集めている核酸医薬の開発においては、その構造多様性付与を意図して、人工核酸を組み込む合成法が求められています。星野さんは医薬基盤・健康・栄養研究所所属時に、架橋型人工核酸を効率的に組み込める人工ポリメラーゼを開発し、核酸化学の発展に重要な要素技術を確立しました。本成果はJ. Am. Chem. Soc.誌 原著論文・プレスリリースに公開されています。

“DNA Polymerase Variants with High Processivity and Accuracy for Encoding and Decoding Locked Nucleic Acid Sequences”
Hoshino, H.; Kasahara, Y.; Kuwahara, M.; Obika, S.  J. Am. Chem. Soc. 2020, 142, 21530–21537. doi:10.1021/jacs.0c10902

現在はノートルダム大学で博士研究員をされており、新たな世界でのますますのご活躍が期待されます。それでは今回も現場のインタビューをどうぞ!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

図1 2′,4′-BNA/LNA

本研究ではDNAポリメラーゼを基に改変を加えることで、人工核酸の一つである2′,4′-BNA/LNA (図1、以下LNA)を高効率・高正確に伸長することのできる改変ポリメラーゼを開発しました。この改変ポリメラーゼを用いて人工核酸アプタマーの取得にも成功しています。LNAは恩師である小比賀教授が開発した人工核酸であり、優れた核酸分解酵素耐性・二重鎖親和性を有しています。優れた分解酵素耐性により、アプタマーの生体内安定性を高めることができます。また優れた二重鎖親和性はアプタマーの高次構造を安定化し、標的分子に対してエントロピー的に有利な結合が期待できます。さらに、本研究で初めて人工核酸のキロベースレベルでの伸長を達成しました。人工核酸アプタマー開発だけでなく、新しいサイエンスのために役立つ可能性があります。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

思い入れがあるのは目的の改変ポリメラーゼを開発する過程で作製した大量のポリメラーゼ変異体です。各変異は単独では伸長効率への効果が小さく、複数組み合わせることで効果が大きくなるものでした。そのため様々な組み合わせを試す必要があり、最終的に変異体の数が100種類以上に膨れ上がってしまいました。大量の変異体を人工核酸の種類によって使い分けることができるため、今後の研究にも役立てられるのではないかと思っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

伸長効率と正確性を兼ね備えた改変ポリメラーゼを作るのが難しかったです。先行研究でLNAの伸長が可能な改変ポリメラーゼは報告されていましたが、効率・正確性ともに低いものであり、LNAを含むフル修飾型の人工核酸アプタマーは報告されていませんでした。進化分子工学的に酵素を改変するのは非常に有効な方法であり、伸長効率を向上させる方向に進化させている例はいくつもあります。しかし、ポリメラーゼの正確性を向上させる方向に進化させるのは非常に難しいです。本研究では点変異導入によって変異体を作製し、各変異の伸長効率と正確性への寄与を細かく評価しました。反応条件なども含めて地道に改善を重ねることで最終的に良いものになったと思います。

Q4. 将来は化学とどう関わっていきたいですか?

自分自身やっていて楽しい、そして人のために役立つ研究をしていきたいです。それらの点がしっかりしていれば、高いモチベーションで研究が続けられるのではないかと思っています。また本研究では新しいものを産み出す楽しさを知ることができたので今後も続けていきたいです。本研究の反省点として、ひたすら地道すぎたので、欲を言えばもう少しスマートな研究にも取り組んでいきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んでいただいた読者の皆様、本当にありがとうございます。読む価値のある論文をなんとか出せるように今後も努力して参りたいと思います。最後に大変お世話になりました小比賀聡先生・桒原正靖先生・笠原勇矢先生に、この場を借りて御礼申し上げます。

研究者の略歴

氏名:星野 秀和
所属:University of Notre Dame, Department of Chemistry and Biochemistry, Postdoctoral Research Associate (Shahriar Mobashery lab)
略歴:
2013年3月 東京理科大学大学院 総合化学研究科 博士前期課程修了(鳥越研究室)
2016年3月 大阪大学大学院 薬学研究科 博士後期課程修了(小比賀研究室)
2016年4月-2020年9月 医薬基盤・健康・栄養研究所 人工核酸スクリーニングプロジェクト 特任研究員
2020年10月- 現職

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【21卒イベント 大阪開催2/26(水)】 「化学業界 企業合同…
  2. ライバルのラボで大発見!そのときあなたはどうする?
  3. グラフィカルアブストラクト付・化学系ジャーナルRSSフィード
  4. ネイチャー論文で絶対立体配置の”誤審”
  5. 「人工金属酵素によるSystems Catalysisと細胞内触…
  6. 特許の基礎知識(1)そもそも「特許」って何?
  7. アカデミックの世界は理不尽か?
  8. 今年は共有結合100周年ールイスの構造式の物語

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  2. 千田憲孝 Noritaka Chida
  3. 幾何学の定理を活用したものづくり
  4. 三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発
  5. 第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授
  6. 過酸がC–H結合を切ってメチル基を提供する
  7. 窒素固定をめぐって-1
  8. 化学者が麻薬を合成する?:Breaking Bad
  9. 最も引用された論文
  10. コーリー・ウィンターオレフィン合成 Corey-Winter Olefin Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP