[スポンサーリンク]

H

ヒュスゲン環化付加 Huisgen Cycloaddition

[スポンサーリンク]

概要

ヒュスゲン双極子環化付加(Huisgen 1,3-dipolar cycloaddition)とは、ヘテロ原子含有双極子とアルキン/アルケン間で進行する[3+2]双極子付加環化反応を指す。

その中でも、アジド―アルキン間の組合せからトリアゾールを与える反応形式(Azide-Alkyne Cycloaddition, AAC)は、ケミカルバイオロジー研究に革命をもたらした化学反応として知られ、きわめて高収率かつ高い官能基選択性で進行することが特徴である。ほかにどのような官能基があってもアルキンとアジドのみが反応し、反応は不可逆的に進行する。溶媒を選ばず、水中でも反応は進行する。アトムエコノミーは100%である。

この特性が脚光を浴び、機能性物質創製(医薬候補化合物、バイオプローブ、ソフトマテリアルetc)におけるリゲーション反応として広く活用されるようになった。Sharplessによって推進されているクリックケミストリーの代名詞的反応として知られる。このため俗に“Click Reaction”と呼ばれることもある。

基本文献

<Cu-catalyzed conditions>
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. [Abstract]
  • Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. DOI: 10.1021/jo011148j
  • Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192. DOI: 10.1021/ja021381e
  • Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V.Org. Lett. 2004, 6, 2853. DOI: 10.1021/ol0493094
<Mechanistic Studies for Cu-catalyzed AAC>
  • Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.: Fokin, V. V. J. Am. Chem. Soc. 2005127, 210. DOI: 10.1021/ja0471525
  • Rodionov, V. O.; Presolski, S. I.; Diaz Diaz, D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705. DOI: 10.1021/ja072679d
  • Worell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013340, 457. DOI: 10.1126/science.1229506
<Cu-free AAC>
  • Wittig, G.; Krebs, A. Chem. Ber. 196194, 3260. DOI: 10.1002/cber.19610941213
  • Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046.DOI: 10.1021/ja044996f
  • Bertozzi, C. R. et al. Proc. Natl. Acad. Sci. USA 2007104, 16793. doi:10.1073/pnas.0707090104
  • Ning, X.; Temming, R. P.; Dommerholt, J.; Guo, J.; Ania, D. B.; Debets, M. F.; Wolfert, M. A.; Boons, G.-J.; van Delft, F. L. Angew. Chem. Int. Ed. 2010, 49, 3065. doi:10.1002/anie.201000408
<Reviews for Metal-catalyzed or Metal-free AAC>
  • Huisgen, R. Angew. Chem. Int. Ed. Engl. 19632, 565. DOI: 10.1002/anie.196305651
  • Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51. DOI: 10.1002/ejoc.200500483
  • Wu, P.; Fokin, V. V. Aldrichimica Acta 200740, 7.
  • Meldal, M.; Tomoe, C. W. Chem. Rev. 2008108, 2952. DOI: 10.1021/cr0783479
  • Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 201039, 1302. DOI: 10.1039/B904091A
  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 201039, 1272. DOI: 10.1039/B901970G
  • Debets, M. F.; van der Doelen, C. W. J.; Rutjes, F. P. J. T.; van Delft, F. L. ChemBioChem 2010, 11, 1168. DOI: 10.1002/cbic.201000064
  • Debets, M. F.; van Berkel, S. S.; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. J. T.; van Delft, F. L. Acc. Chem. Res. 201144, 805. DOI: 10.1021/ar200059z
  • Liang, L.; Astruc, D. Coord. Chem. Rev. 2011255, 2933. doi:10.1016/j.ccr.2011.06.028
  • Haldon, E.; Nicasio, M. C.; Perez, P. J. Org. Biomol. Chem. 2015, 13, 9528. DOI: 10.1039/C5OB01457C
  • Johansson, J. R.; Beke-Somfai, T.; Stalsmeden, A. S.; Kann, N. Chem. Rev. 2016, 116, 14726. DOI: 10.1021/acs.chemrev.6b00466
<Review for Click Chemistry>
<Contributions of Rolf Huisgen>

開発の歴史

アジド―アルキン間の熱的環化付加反応については、Rolf Huisgenらによってに1961年に開発された。

Rolf Huisgen (写真:Wikipedia

2002年に適切な銅(I)触媒の活用により、末端アルキンの場合には大幅な反応加速(およそ100万倍)が見られることが、SharplessとMeldalらによって独立に示された。触媒の活用によって、位置選択性も向上する。汎用条件ではアスコルビン酸ナトリウムによって銅(I)を還元的に系中生成させている。

しかしながら高濃度の銅触媒条件は毒性などが問題となり、生細胞系内でのラベリングには適さない。その問題解決を意図してBertozziらは、電子不足な歪アルキン(シクロオクチン)を用いる銅フリーな付加環化反応条件を開発した。実際に本反応は生体条件下でも問題なく進行し、アジド含有タンパク質などの特異的ラベル化に活用可能であることが実証されている。

反応機構

熱的条件は、典型的な[3+2]双極子付加環化反応である。銅触媒を用いる場合には、銅が二原子関与した銅アセチリド経由で進行すると考えられている。位置選択性もこのメカニズムで説明可能(Science 2013340, 457)。

反応例

      • Sharplessらはアセチルコリンエステラーゼ(AchE)を鋳型とし、異なる結合部位をもつ2種の阻害剤をHuisgen環化によりリゲーションすることを試みた。その結果、世界最強のAchE阻害剤を発見することに成功している[1]。

huisgen13_2.gif

      • TBTA[2a]やトリス(ベンズイミダゾール)アミン[2b]を配位子とする銅触媒はAAC反応に対して極めて活性が高い。

  • ルテニウム触媒を用いると、位置選択性を銅触媒の生成物から逆転させることができる。また内部アルキンにも適用がある[3]。

  • 銅フリーAAC反応について適する歪アルキンの構造が精査されており、BARACが最も活性の高い基質として知られている[4]。

  • 銀触媒もAAC反応を加速させることが報告されている[5]。

実験のコツ・テクニック

  • 銅条件の毒性は以下の目安[6]。

Mammalian cells : Cu(I) (<500 uM)にて 1h 生存。
Zebrafish embryo: CuSO4 (1 mM), Na-ascorbate (1.5 mM), Tris(benyltriazolylmethyl)amine ligand (0.1 mM)にて15 min 生存。

  • アジド化合物は爆発性を有するので合成と取扱いには注意を要する。アジド化合物に含まれる(炭素+酸素)を窒素で割った数(C/N比)が3未満の化合物は極めて危険性が高く、合成は推奨されない。
  • 抽出操作にジクロロメタンを用いると爆発性の高いジアジドメタンを生じる可能性がある[7]。うっかりやりがちなので注意する。
  • 金属アジドを秤量するときはテフロン製スパーテルを使う。

参考文献

  1. (a) Sharpless, K. B. et al. Angew. Chem. Int. Ed. 2002, 41, 1053. [Abstract] (b) Sharpless, K. B. et al. J. Am. Chem. Soc. 2005, 127, 6686. DOI:10.1021/ja043031t
  2. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853. DOI: 10.1021/ol0493094 (b) Rodionov, V. O.; Presolski, S. I.; Diaz Diaz, D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705. DOI: 10.1021/ja072679d
  3. (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998. DOI: 10.1021/ja054114s (b) Rasmussen ,L.; Boren, B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337. DOI: 10.1021/ol701912s (c) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008130, 8923. DOI: 10.1021/ja0749993
  4. (a) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688. DOI: 10.1021/ja100014q (b) Gordon, C. G.; Bertozzi, C. R. J. Am. Chem. Soc. 2012134, 9199. DOI: 10.1021/ja3000936
  5. (a) McNulty, J.; Keskar, K.; Vemula, R. Chem. Eur. J. 2011, 17, 14727. DOI: 10.1002/chem.201103244 (b) McNulty, J.; Keskar, K. Eur. J. Org. Chem. 2012, 5462. DOI: 10.1002/ejoc.201200930
  6. Slatten, E. M.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2009, 48, 6974. DOI: 10.1002/anie.200900942
  7. Conrow, R. E.; Dean, W. D. Org. Process Res. Dev. 2008, 12, 1285. DOI: 10.1021/op8000977

関連反応

関連書籍

外部リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マッテソン増炭反応 Matteson Homologation
  2. 秋山・寺田触媒 Akiyama-Terada Catalyst
  3. 一重項酸素 Singlet Oxygen
  4. バルビエ・ウィーランド分解 Barbier-Wieland De…
  5. シュタウディンガー ケテン環化付加 Staudinger Ket…
  6. エヴァンスアルドール反応 Evans Aldol Reactio…
  7. ガッターマン アルデヒド合成 Gattermann Aldehy…
  8. ポロノフスキー開裂 Polonovski Fragmentati…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ペンタレネン Pentalenene
  2. 長井長義 Nagayoshi Nagai
  3. 衣笠反応 Kinugasa Reaction
  4. 1,3-ビス[(2,2-ジメチル-1,3-ジオキサン-5-イル)オキシ]-2-プロパノール : 1,3-Bis[(2,2-dimethyl-1,3-dioxan-5-yl)oxy]-2-propanol
  5. 後発医薬品、相次ぎ発売・特許切れ好機に
  6. 「ねるねるねるね」はなぜ色が変わって膨らむのか?
  7. エレクトロクロミズム Electrochromism
  8. 架橋シラ-N-ヘテロ環合成の新手法
  9. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  10. 大学入試のあれこれ ①

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ケムステ版・ノーベル化学賞候補者リスト【2020年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を照らす光反応・光機能 ~」を開催します!

ノーベル賞の発表も来週に迫っていますし、後期も始まりますね。10月から新しく始まるシーズンに、どこと…

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だい…

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

Chem-Station Twitter

PAGE TOP