[スポンサーリンク]

H

ヒュスゲン環化付加 Huisgen Cycloaddition

概要

ヒュスゲン双極子環化付加(Huisgen 1,3-dipolar cycloaddition)とは、ヘテロ原子含有双極子とアルキン/アルケン間で進行する[3+2]双極子付加環化反応を指す。

その中でも、アジド―アルキン間の組合せからトリアゾールを与える反応形式(Azide-Alkyne Cycloaddition, AAC)は、ケミカルバイオロジー研究に革命をもたらした化学反応として知られ、きわめて高収率かつ高い官能基選択性で進行することが特徴である。ほかにどのような官能基があってもアルキンとアジドのみが反応し、反応は不可逆的に進行する。溶媒を選ばず、水中でも反応は進行する。アトムエコノミーは100%である。

この特性が脚光を浴び、機能性物質創製(医薬候補化合物、バイオプローブ、ソフトマテリアルetc)におけるリゲーション反応として広く活用されるようになった。Sharplessによって推進されているクリックケミストリーの代名詞的反応として知られる。このため俗に“Click Reaction”と呼ばれることもある。

基本文献

<Cu-catalyzed conditions>
  • Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. [Abstract]
  • Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. DOI: 10.1021/jo011148j
  • Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192. DOI: 10.1021/ja021381e
  • Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V.Org. Lett. 2004, 6, 2853. DOI: 10.1021/ol0493094
<Mechanistic Studies for Cu-catalyzed AAC>
  • Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.: Fokin, V. V. J. Am. Chem. Soc. 2005127, 210. DOI: 10.1021/ja0471525
  • Rodionov, V. O.; Presolski, S. I.; Diaz Diaz, D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705. DOI: 10.1021/ja072679d
  • Worell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013340, 457. DOI: 10.1126/science.1229506
<Cu-free AAC>
  • Wittig, G.; Krebs, A. Chem. Ber. 196194, 3260. DOI: 10.1002/cber.19610941213
  • Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046.DOI: 10.1021/ja044996f
  • Bertozzi, C. R. et al. Proc. Natl. Acad. Sci. USA 2007104, 16793. doi:10.1073/pnas.0707090104
  • Ning, X.; Temming, R. P.; Dommerholt, J.; Guo, J.; Ania, D. B.; Debets, M. F.; Wolfert, M. A.; Boons, G.-J.; van Delft, F. L. Angew. Chem. Int. Ed. 2010, 49, 3065. doi:10.1002/anie.201000408
<Reviews for Metal-catalyzed or Metal-free AAC>
  • Huisgen, R. Angew. Chem. Int. Ed. Engl. 19632, 565. DOI: 10.1002/anie.196305651
  • Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51. DOI: 10.1002/ejoc.200500483
  • Wu, P.; Fokin, V. V. Aldrichimica Acta 200740, 7.
  • Meldal, M.; Tomoe, C. W. Chem. Rev. 2008108, 2952. DOI: 10.1021/cr0783479
  • Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 201039, 1302. DOI: 10.1039/B904091A
  • Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 201039, 1272. DOI: 10.1039/B901970G
  • Debets, M. F.; van der Doelen, C. W. J.; Rutjes, F. P. J. T.; van Delft, F. L. ChemBioChem 2010, 11, 1168. DOI: 10.1002/cbic.201000064
  • Debets, M. F.; van Berkel, S. S.; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. J. T.; van Delft, F. L. Acc. Chem. Res. 201144, 805. DOI: 10.1021/ar200059z
  • Liang, L.; Astruc, D. Coord. Chem. Rev. 2011255, 2933. doi:10.1016/j.ccr.2011.06.028
  • Haldon, E.; Nicasio, M. C.; Perez, P. J. Org. Biomol. Chem. 2015, 13, 9528. DOI: 10.1039/C5OB01457C
  • Johansson, J. R.; Beke-Somfai, T.; Stalsmeden, A. S.; Kann, N. Chem. Rev. 2016, 116, 14726. DOI: 10.1021/acs.chemrev.6b00466
<Review for Click Chemistry>
<Contributions of Rolf Huisgen>

開発の歴史

アジド―アルキン間の熱的環化付加反応については、Rolf Huisgenらによってに1961年に開発された。

Rolf Huisgen (写真:Wikipedia

2002年に適切な銅(I)触媒の活用により、末端アルキンの場合には大幅な反応加速(およそ100万倍)が見られることが、SharplessとMeldalらによって独立に示された。触媒の活用によって、位置選択性も向上する。汎用条件ではアスコルビン酸ナトリウムによって銅(I)を還元的に系中生成させている。

しかしながら高濃度の銅触媒条件は毒性などが問題となり、生細胞系内でのラベリングには適さない。その問題解決を意図してBertozziらは、電子不足な歪アルキン(シクロオクチン)を用いる銅フリーな付加環化反応条件を開発した。実際に本反応は生体条件下でも問題なく進行し、アジド含有タンパク質などの特異的ラベル化に活用可能であることが実証されている。

反応機構

熱的条件は、典型的な[3+2]双極子付加環化反応である。銅触媒を用いる場合には、銅が二原子関与した銅アセチリド経由で進行すると考えられている。位置選択性もこのメカニズムで説明可能(Science 2013340, 457)。

反応例

      • Sharplessらはアセチルコリンエステラーゼ(AchE)を鋳型とし、異なる結合部位をもつ2種の阻害剤をHuisgen環化によりリゲーションすることを試みた。その結果、世界最強のAchE阻害剤を発見することに成功している[1]。

huisgen13_2.gif

      • TBTA[2a]やトリス(ベンズイミダゾール)アミン[2b]を配位子とする銅触媒はAAC反応に対して極めて活性が高い。

  • ルテニウム触媒を用いると、位置選択性を銅触媒の生成物から逆転させることができる。また内部アルキンにも適用がある[3]。

  • 銅フリーAAC反応について適する歪アルキンの構造が精査されており、BARACが最も活性の高い基質として知られている[4]。

  • 銀触媒もAAC反応を加速させることが報告されている[5]。

実験のコツ・テクニック

  • 銅条件の毒性は以下の目安[6]。

Mammalian cells : Cu(I) (<500 uM)にて 1h 生存。
Zebrafish embryo: CuSO4 (1 mM), Na-ascorbate (1.5 mM), Tris(benyltriazolylmethyl)amine ligand (0.1 mM)にて15 min 生存。

  • アジド化合物は爆発性を有するので合成と取扱いには注意を要する。アジド化合物に含まれる(炭素+酸素)を窒素で割った数(C/N比)が3未満の化合物は極めて危険性が高く、合成は推奨されない。
  • 抽出操作にジクロロメタンを用いると爆発性の高いジアジドメタンを生じる可能性がある[7]。うっかりやりがちなので注意する。
  • 金属アジドを秤量するときはテフロン製スパーテルを使う。

参考文献

  1. (a) Sharpless, K. B. et al. Angew. Chem. Int. Ed. 2002, 41, 1053. [Abstract] (b) Sharpless, K. B. et al. J. Am. Chem. Soc. 2005, 127, 6686. DOI:10.1021/ja043031t
  2. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853. DOI: 10.1021/ol0493094 (b) Rodionov, V. O.; Presolski, S. I.; Diaz Diaz, D.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12705. DOI: 10.1021/ja072679d
  3. (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998. DOI: 10.1021/ja054114s (b) Rasmussen ,L.; Boren, B. C.; Fokin, V. V. Org. Lett. 2007, 9, 5337. DOI: 10.1021/ol701912s (c) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008130, 8923. DOI: 10.1021/ja0749993
  4. (a) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688. DOI: 10.1021/ja100014q (b) Gordon, C. G.; Bertozzi, C. R. J. Am. Chem. Soc. 2012134, 9199. DOI: 10.1021/ja3000936
  5. (a) McNulty, J.; Keskar, K.; Vemula, R. Chem. Eur. J. 2011, 17, 14727. DOI: 10.1002/chem.201103244 (b) McNulty, J.; Keskar, K. Eur. J. Org. Chem. 2012, 5462. DOI: 10.1002/ejoc.201200930
  6. Slatten, E. M.; Bertozzi, C. R. Angew. Chem. Int. Ed. 2009, 48, 6974. DOI: 10.1002/anie.200900942
  7. Conrow, R. E.; Dean, W. D. Org. Process Res. Dev. 2008, 12, 1285. DOI: 10.1021/op8000977

関連反応

関連書籍

外部リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. トリメチレンメタン付加環化 Trimethylenemethan…
  2. ピーターソンオレフィン化 Peterson Olefinatio…
  3. バナジル(アセチルアセトナト) Vanadyl(IV) acet…
  4. ストライカー試薬 Stryker’s Reagent…
  5. ピナー ピリミジン合成 Pinner Pyrimidine Sy…
  6. ハンチュ ジヒドロピリジン合成  Hantzsch Dihydr…
  7. ウルマンカップリング Ullmann Coupling
  8. ジアゾカップリング diazocoupling

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 文献検索サイトをもっと便利に:X-MOLをレビュー
  2. メタンハイドレートの化学 ~その2~
  3. 科学史上最悪のスキャンダル?! “Climategate”
  4. ケムステが化学コミュニケーション賞2012を受賞しました
  5. 紹介会社を使った就活
  6. 光触媒による水素生成効率が3%に
  7. 炭素繊維は鉄とアルミに勝るか? 1
  8. V字型分子が実現した固体状態の優れた光物性
  9. 不斉アリルホウ素化 Asymmetric Allylboration
  10. バートン脱カルボキシル化 Barton Decarboxylation

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP