[スポンサーリンク]

化学者のつぶやき

【第11回Vシンポ特別企画】講師紹介①:東原 知哉 先生

[スポンサーリンク]

今回の記事では、第11回ケムステバーチャルシンポジウム「最先端精密高分子合成」をより楽しむべく、講師の一人である東原知哉先生について紹介いたします。

東原 知哉 先生 (山形大 ・教授)

学生時代(1996〜2005)

東京工業大学 有機・高分子物質専攻 平尾研究室にてアニオン重合による様々な形状の分岐(ブロックコ)ポリマーの精密合成を学ばれました。高分子合成を専門としない方はあまりご存知ないかもしれませんが、アニオン重合を精密に実行しようと思うと、ブレークシール法 [1] という、モノマー、開始剤、停止剤などの試薬や溶媒を完全に封管密閉したガラス容器を自分で作成して重合を行わなければなりません。このガラス器具の中には磁石が入っており、外側から別の磁石で操作し、内部のガラスを割ることで試薬を加えていくという、普通の有機合成の研究室では考えられないような高度な技術が必要とされます。つまり、リビングラジカル重合が開発(1993年ごろ)される以前のリビング重合というのは、限られた研究者にしかできない特別なものだったということです。現在はリビングラジカル重合が開発され、誰でも精密重合ができるようになってきましたが、分子量分布の観点ではリビングアニオン重合に勝るものはないと言われています。平尾研で合成された美しいポリマーは過去にケムステの記事でも取り上げられています。

写真:東原先生よりご提供いただきました

 

このように高度な技術が要求されるリビングアニオン重合を活用することで、AB2C4D8E16という形の31アームペンタブロックコポリマー(数平均分子量35万6千Da、分子量分布1.02)の合成に東原先生は成功しました[2]。私は自身で行った経験はありませんが、分子量分布が1.02のポリマーのSEC曲線は非常にシャープなもので、スラムダンク中、安西先生が翔陽戦で復活してきた三井のシュートを見て「きれいなフォームだ」と言ったシーンが彷彿とされます。

ポスドク時代(2005〜2008)

マサチューセッツ大学ローウェル校・Rudolf Faust先生のもと、今度はリビングカチオン重合を学ばれました。ビニルモノマーにはいろいろあるのですが、リビングアニオン重合では合成できないけれどもリビングカチオン重合では合成できるポリマーも幾つかあり、その代表的なものがポリイソブテン(ブチルゴムの主成分のポリマー)やポリビニルエーテルです。Faust研での東原先生はポリイソブテンの精密重合に関する研究を行い、様々な構造明確なポリイソブテン含有ブロックコポリマーを合成されました[3]。アニオン重合のみならずカチオン重合までも習得されている東原先生の精密高分子合成への思いがうかがわれます。

助教時代(2008〜2013)

東京工業大学 上田充先生の研究室で助教になられた際には、ここまで続けてきたイオン重合による高分子合成を離れ、重縮合による導電性ポリマー、高屈折率ポリマー、フォトレジストポリマーなどの機能性高分子の研究に取り組まれました。会告記事にも書きましたが、2000年ごろまではリビング重合はビニル重合と開環重合だけのものと考えられておりましたが、横澤先生の研究により、ポリアミド、ポリエステルのみならず、ポリチオフェンなどの共役系導電性ポリマーなど(2005〜)でもリビング重合ができるようになってきた時代でもあります。上田研におられた際にはこの重合法と、東原先生のアニオン重合の技術を合わせた、まさしく東原先生にしかできない研究を展開されておりました[4]
ちなみに石割(当時学生)と東原先生との出会いはこの時で、石割は隣の高田研究室に所属していたのですが、東原先生はそれこそ朝4時まで実験される先生でしたので、深夜2時とか3時に缶ビールおよび牛角キムチともに上田研に突入して東原先生とお酒を飲んだりできたのはとても良い思い出です。

准教授、教授時代(2013〜現在)

山形大学准教授として移られてからは研究室を主催され、亜鉛錯体を利用したパイ共役系ポリマーの新しいリビング重合法の開発や[5]、それを活かした有機薄膜太陽電池や、有機薄膜トランジスタなどの開発を行っておられます。また、リビング重合のみならず、パイ共役系ポリマーのStilleカップリング重合による非等モル重縮合(nonstoichiometric polycondensation;逐次重合においては、モノマーを1:1で入れないと高分子量体が得られないが、片方のモノマーが過剰でも高分子量のポリマーが得られる手法)を世界で初めて達成されております[6]。最近の東原先生の論文でも、カチオン重合で作ったブチルゴムポリマーとパイ共役系ポリマーを組み合わせて伸縮可能な導電性材料の開発も行われており[7]、これもまさしく東原先生しか合成できないポリマーだなあと思い大変感銘を受けました。

さらに現在の専門分野を見ますと、あまり見慣れない「鮮度保持」の文言が。精密重合以外にも食品の鮮度を保つ高分子材料の研究もされており、山形県の農業への貢献もされているようです[8]

写真はこちらこちらの記事より引用

このように東原先生は様々な高分子の精密合成に携わってこられ、「あらゆるジャンルの高分子を最も精密に作れる研究者」と言っても過言ではないことがお分かりになったとおもいます。さて、そんな東原先生の今回の講演タイトルは「π共役高分子を環境にやさしく精密につくる」です! どのような講演が聞けるかとても楽しみですね!それではお楽しみに!!

関連記事

Vシンポ参加登録はこちら

参考文献

  1. N. Hadjichristidis et al., J Polym Sci Part A: Polym Chem 2000, 38, 3211.
  2. T. Higashihara, T. Sakurai, A. Hirao Macromolecules 2009, 42, 6006.
  3. T. Higashihara, R. Faust, K. Inoue, A. Hirao, Macromolecules 2008, 41, 5616.
  4. T. Higashihara, K. Ohshimizu, A. Hirao, M. Ueda, Macromolecules 2008, 41, 9505.
  5. E. Goto, S. Nakamura, S. Kawauchi, H. Mori, M. Ueda, T. Higashihara, J Polym Sci Part A: Polym Chem, 2014, 52, 2287.
  6. E. Goto, S. Ando, M. Ueda, T. Higashihara, ACS Macro Lett. 2015, 4, 1004.
  7. T. Higashihara, S. Fukuta, Y. Ochiai, T. Sekine, K. Chino, T. Koganezawa, I. Osaka, ACS Appl. Polym. Mater. 2019, 1, 315.
  8. 国産さくらんぼの海外輸送用鮮度保持パッケージ技術
Avatar photo

Kosuge

投稿者の記事一覧

高分子、超分子、材料化学専門の大学講師です。

関連記事

  1. アレ?アレノン使えばノンラセミ化?!
  2. ケムステタイムトラベル2010 ~今こそ昔の記事を見てみよう~
  3. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  4. 『鬼滅の刃』の感想文~「無題」への回答~
  5. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  6. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意…
  7. 偏光依存赤外分光でMOF薄膜の配向を明らかに! ~X線を使わない…
  8. がん細胞をマルチカラーに光らせる

注目情報

ピックアップ記事

  1. フェティゾン試薬 Fetizon’s Reagent
  2. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  3. シュミット転位 Schmidt Rearrangement
  4. 顕微鏡の使い方ノート―はじめての観察からイメージングの応用まで (無敵のバイオテクニカルシリーズ)
  5. エーザイ、抗体医薬の米社を390億円で買収完了
  6. デイヴィッド・リウ David R. Liu
  7. 英会話イメージリンク習得法―英会話教室に行く前に身につけておきたいネイティブ発想
  8. グリニャール反応 Grignard Reaction
  9. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications
  10. 【日産化学 22卒/YouTube配信!】START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP