[スポンサーリンク]

化学者のつぶやき

光学迷彩をまとう海洋生物―その仕組みに迫る

[スポンサーリンク]

 

まずはこの動画をご覧ください。

これは熱帯~亜熱帯域に生息するサフィリナという生き物の映像です。美しい青色で光ったかと思えば、一瞬で姿を消したりします。あたかも光学迷彩を身にまとっているかのような、不思議な生物なのです(※ちなみに冒頭画像は光学迷彩のインパクトを我々に植え付けて止まない、『攻殻機動隊』の歴史的オープニングですね!)。

なぜこのような見え方をするのか?については、科学者にとって長年の謎でした。イスラエルのワイツマン研究所・Lia Addadiらによって、この仕組みにせまる研究が昨年のJ. Am. Chem. Soc.誌に報告されましたので、今回はこれについて紹介したいと思います。

“Structural Basis for the Brilliant Colors of the Sapphirinid Copepods”
Gur, D.; Leshem, B.; Pierantoni, M.; Farstey, V.; Oron, D.; Weiner, S.; Addadi, L. J. Am. Chem. Soc. 2015, 137, 8408. DOI: 10.1021/jacs.5b05289

サフィリナについて

写真は冒頭論文より引用

写真は冒頭論文より引用

カイアシ類のサフィリナ(Sapphirina Copepod)は、熱帯・亜熱帯域の外洋表層(海面~300m水深)に生息する微小甲殻類(大きさはアリ程度)の一種です。“海のサファイア”との異名で呼ばれるのも納得の、美しい外見です。

サフィリナは、雄のみが動画のような光反射・透明化を示すことが知られています。回転しながら泳いできらきら光らせることで、雌にアピールしているんじゃないかと言われています。捕食者から逃れることにも一役買っていることでしょう。

これはサフィリナ自身が気合いで透明に変化しているわけでは無く(笑)、体を傾けたときに光の当たる角度が変わると、反射光の波長が変わるという特異な構造色に起因しています。さらに面白いことにこの色は、生息深度により異なることが知られています(浅水域では黄・橙・赤、深水域では青・紫となる)。

これまでの研究から、サフィリナの構造色には、皮殻内にあるグアニン結晶のハニカム状多層構造とその厚みが重要だろうと考えられてきました[1]。しかし色の違いや、入射角によって反射光の波長が大きく変わる現象については、うまい説明を与えるものとは言えませんでした。

サフィリナ皮殻のグアニジンハニカム(冒頭論文より引用)

サフィリナ皮殻に見られるグアニン結晶ハニカム多層構造(冒頭論文より引用)

結晶の厚みは重要じゃなかった!

Addadiらはなるべく生きたままに近い状態を観測すべく、独自の冷凍実験手法とCryo-SEM技術を組み合わせてサフィリナ皮殻の観測を行いました。色の異なるサフィリナをそれぞれ観測したところ、以下のことが分かりました。

  • グアニン結晶層の厚みは、どのサフィリナ種においてもほぼ同じ(約70nm)だった。
  • 各サフィリナ種で異なるのは、グアニン結晶層間に存在する細胞質の厚さ(50~200nm)であった。

「細胞質の厚みが異なる」という新たに得られた知見を加味して、反射光の波長シミュレーションを行ったところ、実測値・観測される構造色と大変良い一致を示すことが分かりました(このような特異な反射スペクトルには、グアニン結晶の複屈折性による反射光の強度減弱なども一役買っているのではとの考察がなされています)。またこの事実をして、実は細胞質をつくる代謝の違いで個別に色が調節されているのではないかとの示唆も得ています。

optical_camouflage_4

各サフィリナの反射光スペクトル、そのシミュレーション(Cy:細胞質の厚さ、Cr:結晶の厚さ)、細胞質の厚さが異なる様子を示すCryo-SEM像(冒頭論文より引用・改変)

 

また、サフィリナ背面から照射角度を変えて反射光のスペクトルを測定したところ、角度の増大に伴ってピーク波長が短波長側にずれていくことも分かりました。あるサフィリナについては、光の入射角が45°になると、反射光の極大波長が紫外領域に到達します。すなわち反射光が目に見えない波長になるため、透明に見えるのです。

optical_camouflage_5

入射角に応じた反射光スペクトルおよびサフィリナ外見の変化(冒頭論文より引用・改変)

 

この考え方を材料設計に応用することも、当然考えられます。どこまで大きいものを透明にできるのか、いくつかのパタンを組み合わせてカラーバリエーションを増やせないものか・・・などなど、興味は尽きないことでしょう。

一方で、六角形ハニカム構造の必要性と、それがどんな役割を果たしているかについては明言されていません。謎はまだまだ残されているようです。

終わりに

化学・工学は、「現象そのもの」よりも、それを結びつける「変化」とその「制御」にフォーカスした学問であるといえます。

ゆえに、目視で現象として把握しやすく興味を引きやすい「自然界の未知」を解き明かすというアプローチは、化学が扱う研究テーマにしにくい事情があるやも知れません。化学が市井の理解を得づらい背景には、実はそんな本質も寄与しているのではないかと思います。

しかし生命や自然の仕組みに学んだ後に、それを人間にとって役立つものに仕上げていく学際研究領域、すなわちBiomimetics Researchでは、化学・工学からの多大な貢献が望まれています。純粋興味からの入り口であっても、いずれは化学研究に繋がることは十二分にありえます。

このような長期目線からの大発見を戦略的に狙っていくには、基礎研究の灯を絶やさないことが何より重要といえるのではないでしょうか。

いつの日か、化学者の分子設計が生み出す光学迷彩技術の実現を夢見て、筆を置きたいと思います。

関連文献

  1. (a) Chae, J.; Nishida, S. Mar. Biol. 1994, 119, 205. (b) Chae, J.; Nishida, S. Mar. Ecol.: Prog. Ser. 1995, 119, 111. (c) Baar, Y.; Rosen, J.; Shashar, N. PLoS One 2014, 9, e86131. (d) Chae, J.; Nishida, S. J. Mar. Biol. Assoc. U. K. 1999, 79, 437. (e) Johnsen, S. Annu. Rev. Mar. Sci. 2014, 6, 369.
  2.  Chae, J. H.; Tsukamoto, K.; Nishida, S.; Ohwada, K. J. Crustacean Biol. 1996, 16, 20.

関連動画

関連書籍・商品

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Pure science
  2. ペプチド模倣体としてのオキセタニルアミノ酸
  3. 有機分子触媒ーChemical Times特集より
  4. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  5. 科学を魅せるーサイエンスビジュアリゼーションー比留川治子さん
  6. 生体組織を人工ラベル化する「AGOX Chemistry」
  7. 有機合成から無機固体材料設計・固体物理へ: 分子でないものの分子…
  8. C70の中に水分子を閉じ込める

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 4-メルカプト安息香酸:4-Mercaptobenzoic Acid
  2. 黎书华 Shuhua Li
  3. 「優れた研究テーマ」はどう選ぶべき?
  4. 世界を股にかける「国際学会/交流会 体験記」
  5. 印象に残った天然物合成1
  6. ホフマン転位 Hofmann Rearrangement
  7. カルバメート系保護基 Carbamate Protection
  8. 第12回 金属錯体から始まる化学ー伊藤肇教授
  9. 安全なジアゾメタン原料
  10. Google翻訳の精度が飛躍的に向上!~その活用法を考える~

関連商品

注目情報

注目情報

最新記事

お前はもう死んでいる:不安定な試薬たち|第4回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

第60回―「エネルギー・環境化学に貢献する金属-有機構造体」Martin Schröder教授

第60回の海外化学者インタビューは、マーティン・シュレーダー教授です。ノッティンガム大学化学科(訳注…

炭素置換Alアニオンの合成と性質の解明

第249回のスポットライトリサーチは、名古屋大学大学院工学研究科(山下研究室)・車田 怜史 さんにお…

第59回―「機能性有機ナノチューブの製造」清水敏美 教授

第59回の海外化学者インタビューは日本から、清水敏美 教授です。独立行政法人産業技術総合研究所(AI…

高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース

詳細・お申込みはこちら日時2020年 4月16日(木)、17日(金)全日程2日間  …

光で水素を放出する、軽量な水素キャリア材料の開発

第248回のスポットライトリサーチは、東京工業大学物質理工学院(宮内研究室)・河村 玲哉さんにお願い…

Chem-Station Twitter

PAGE TOP