[スポンサーリンク]

化学者のつぶやき

非天然アミノ酸触媒による立体選択的環形成反応

[スポンサーリンク]

非天然アミノ酸誘導体により触媒される三分子間での新たなジアステレオ、エナンチオ選択的環化反応が開発された。環状天然物の合成において応用が期待される。

プロリンおよびその誘導体を用いた不斉C–C結合形成反応

空気や水への安定性、取り扱いの容易さ、低環境負荷などの利点をもつ有機触媒を用いた反応はここ十数年で急激な発展を見せている(1)。なかでもアミノ酸及びその誘導体は最小の酵素アナログとみなすことができ、酵素と同様化学反応の触媒として働く。プロリンを触媒に用いた分子内(図 1A)および分子間(図 1B)不斉アルドール反応はその代表例である(2)。一方、プロリン誘導体を触媒として、2006年にEndersらがアルデヒドのニトロアルケンへの共役付加を起点とし、共役カルボニル化合物とのジアステレオおよびエナンチオ選択的な三成分連結環化反応を報告した(3)(図 1C)。

今回Cossíoらは自らが開発したプロリン誘導体XL(4)を触媒に用いた、ケトン、ニトロアルケンおよびカルボン酸間での共役付加反応を起点とする新奇三成分環形成反応を見出したので紹介する(図 1D)。本手法を用いると3つのキラル中心を有する二環式化合物4を立体選択的に合成できる。

図1. プロリン触媒の不斉C–C結合形成反応と今回紹介する反応

 

New Three-Component Enantioselective Cyclization Reaction Catalyzed by Unnatural Amino Acid Derivative

Retamosa, M. de G.; Ruiz-Olalla, A.; Bello, T.; de Cózar, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2017, Early view.

DOI: 10.1002/anie.201708952

論文著者の紹介

研究者: Fernando P. Cossío

研究者の経歴:
1977–1982 B.S., University of Zaragoza, Spain.
1984–1986 Ph.D., University of the Basque Country (UPV/EHU) (Prof. C. Palomo)
1987–1988 Posdoc, CNRS, France (Dr. J.–P. Picard)
1988– Professor, University of the Basque Country (UPV/EHU) (including short stay, UCLA, K. N. Houk, 1994)
2002– Professor (Catedrático), University of the Basque Country (UPV/EHU)
研究内容:ペリ環状反応、C–C結合形成反応、メディシナルケミストリー、計算化学

論文の概要

本反応は過剰量のケトン1、カルボン酸2をニトロアルケン3に対しXLを20 mol%加え無溶媒条件下、45 ℃で反応させることで環化付加体4を生成する(図 2A)。

1として、テトラヒドロ(チオ)ピラノン(X = O or S)を用いても本反応は進行する。脂肪族および芳香族カルボン酸の両方で反応が進行するが、前者の場合は収率が低下する。ニトロアルケンとしては電子不足、電子豊富なニトロスチレン誘導体のどちらも反応に適用可能である。また、プロリンやTMSプロリノール類を触媒とした際、4は生成せず、マイケル付加体のみが得られる。

重酸素ラベル化やDFT計算等の機構解析より、以下のような反応機構が提唱されている(図 2B)。

  1. XL1によるINT1形成
  2. INT13に対する共役付加
  3.  2INT2への付加
  4. INT3の脱水
  5. INT4での分子内転位
  6. INT5の環化
  7. 触媒再生および目的物4の生成

という機構である。高いエナンチオ選択性が現れる理由として、著者らはINT13が反応する際の面選択性において、XL上のニトロ基とINT2の二トロン酸部位との相互作用が重要であると述べている(図 2C TS1)。

なぜXLを触媒とした際のみINT2に対するカルボン酸2の付加が進行するかに興味がもたれるが、遷移状態の最適構造(図 2C TS2)は示されているものの、文中での言及はされていない。このステップにおけるXLの詳細な効果の解明は、本手法のさらなる発展に寄与すると考えられる。

図2. 基質適用範囲(A)推定反応機構(B)遷移状態TS1 & TS2(C)

参考文献

  1. MacMillan, D. W. C. Nature 2008, 455, 304. DOI: 1038/nature07367.
  2. (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 197110, 496. DOI: 10.1002/anie.197104961. (b) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y..
  3. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. DOI: 1038/nature04820.
  4. Conde, E.; Bello, D.; de Cózar, A.; Sánchez, M.; Vázquez, M. A.; Cossío, F. P. Chem. Sci. 2012, 3, 1486. DOI: 10.1039/C2SC20199B.

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 痔の薬のはなし 真剣に調べる
  2. 元素の和名わかりますか?
  3. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・…
  4. 光と熱で固体と液体を行き来する金属錯体
  5. ペロブスカイト太陽電池が直面する現実
  6. 励起状態複合体でキラルシクロプロパンを合成する
  7. 長期海外出張のお役立ちアイテム
  8. 比色法の化学(前編)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. フェリエ転位 Ferrier Rearrangement
  2. 捏造は研究室の中だけの問題か?
  3. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  4. 有望ヘリウム田を発見!? ヘリウム不足解消への希望
  5. 公募開始!2020 CAS Future Leaders プログラム(2020年1月26日締切)
  6. The Art of Problem Solving in Organic Chemistry
  7. 2,9-ジブチル-1,10-フェナントロリン:2,9-Dibutyl-1,10-phenanthroline
  8. 化学を広く伝えるためにー多分野融合の可能性ー
  9. 中嶋直敏 Nakashima Naotoshi
  10. 米デュポン、高機能化学部門を分離へ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】

It's no secret that the COVID-19 pandemic ha…

スポットライトリサーチムービー:動画であなたの研究を紹介します

5年前、ケムステ15周年の際に新たな試みとしてはじめたコンテンツ「スポットライトリサーチ」。…

第110回―「動的配座を制御する化学」Jonathan Clayden教授

第110回の海外化学者インタビューは、ジョナサン・クレイデン教授です。マンチェスター大学化学科(訳注…

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

Chem-Station Twitter

PAGE TOP