[スポンサーリンク]

化学者のつぶやき

非天然アミノ酸触媒による立体選択的環形成反応

非天然アミノ酸誘導体により触媒される三分子間での新たなジアステレオ、エナンチオ選択的環化反応が開発された。環状天然物の合成において応用が期待される。

プロリンおよびその誘導体を用いた不斉C–C結合形成反応

空気や水への安定性、取り扱いの容易さ、低環境負荷などの利点をもつ有機触媒を用いた反応はここ十数年で急激な発展を見せている(1)。なかでもアミノ酸及びその誘導体は最小の酵素アナログとみなすことができ、酵素と同様化学反応の触媒として働く。プロリンを触媒に用いた分子内(図 1A)および分子間(図 1B)不斉アルドール反応はその代表例である(2)。一方、プロリン誘導体を触媒として、2006年にEndersらがアルデヒドのニトロアルケンへの共役付加を起点とし、共役カルボニル化合物とのジアステレオおよびエナンチオ選択的な三成分連結環化反応を報告した(3)(図 1C)。

今回Cossíoらは自らが開発したプロリン誘導体XL(4)を触媒に用いた、ケトン、ニトロアルケンおよびカルボン酸間での共役付加反応を起点とする新奇三成分環形成反応を見出したので紹介する(図 1D)。本手法を用いると3つのキラル中心を有する二環式化合物4を立体選択的に合成できる。

図1. プロリン触媒の不斉C–C結合形成反応と今回紹介する反応

 

New Three-Component Enantioselective Cyclization Reaction Catalyzed by Unnatural Amino Acid Derivative

Retamosa, M. de G.; Ruiz-Olalla, A.; Bello, T.; de Cózar, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2017, Early view.

DOI: 10.1002/anie.201708952

論文著者の紹介

研究者: Fernando P. Cossío

研究者の経歴:
1977–1982 B.S., University of Zaragoza, Spain.
1984–1986 Ph.D., University of the Basque Country (UPV/EHU) (Prof. C. Palomo)
1987–1988 Posdoc, CNRS, France (Dr. J.–P. Picard)
1988– Professor, University of the Basque Country (UPV/EHU) (including short stay, UCLA, K. N. Houk, 1994)
2002– Professor (Catedrático), University of the Basque Country (UPV/EHU)
研究内容:ペリ環状反応、C–C結合形成反応、メディシナルケミストリー、計算化学

論文の概要

本反応は過剰量のケトン1、カルボン酸2をニトロアルケン3に対しXLを20 mol%加え無溶媒条件下、45 ℃で反応させることで環化付加体4を生成する(図 2A)。

1として、テトラヒドロ(チオ)ピラノン(X = O or S)を用いても本反応は進行する。脂肪族および芳香族カルボン酸の両方で反応が進行するが、前者の場合は収率が低下する。ニトロアルケンとしては電子不足、電子豊富なニトロスチレン誘導体のどちらも反応に適用可能である。また、プロリンやTMSプロリノール類を触媒とした際、4は生成せず、マイケル付加体のみが得られる。

重酸素ラベル化やDFT計算等の機構解析より、以下のような反応機構が提唱されている(図 2B)。

  1. XL1によるINT1形成
  2. INT13に対する共役付加
  3.  2INT2への付加
  4. INT3の脱水
  5. INT4での分子内転位
  6. INT5の環化
  7. 触媒再生および目的物4の生成

という機構である。高いエナンチオ選択性が現れる理由として、著者らはINT13が反応する際の面選択性において、XL上のニトロ基とINT2の二トロン酸部位との相互作用が重要であると述べている(図 2C TS1)。

なぜXLを触媒とした際のみINT2に対するカルボン酸2の付加が進行するかに興味がもたれるが、遷移状態の最適構造(図 2C TS2)は示されているものの、文中での言及はされていない。このステップにおけるXLの詳細な効果の解明は、本手法のさらなる発展に寄与すると考えられる。

図2. 基質適用範囲(A)推定反応機構(B)遷移状態TS1 & TS2(C)

参考文献

  1. MacMillan, D. W. C. Nature 2008, 455, 304. DOI: 1038/nature07367.
  2. (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 197110, 496. DOI: 10.1002/anie.197104961. (b) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y..
  3. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. DOI: 1038/nature04820.
  4. Conde, E.; Bello, D.; de Cózar, A.; Sánchez, M.; Vázquez, M. A.; Cossío, F. P. Chem. Sci. 2012, 3, 1486. DOI: 10.1039/C2SC20199B.

関連書籍

The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ハプロフィチンの全合成
  2. マタタビの有効成分のはなし
  3. 良質な論文との出会いを増やす「新着論文リコメンデーションシステム…
  4. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  5. ネイチャー論文で絶対立体配置の”誤審”
  6. 有合化若手セミナーに行ってきました
  7. マイクロプラスチックの諸問題
  8. 信じられない!驚愕の天然物たち

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate
  2. 独BASF、米樹脂メーカーのジョンソンポリマー社を買収
  3. マンガン触媒による飽和炭化水素の直接アジド化
  4. タミフル(オセルタミビル) tamiflu (oseltamivir)
  5. Lectureship Award MBLA 10周年記念特別講演会
  6. サン・タン San H. Thang
  7. 第21回「有機化学で生命現象を理解し、生体反応を制御する」深瀬 浩一 教授
  8. 特許庁「グリーン早期審査・早期審理」の試行開始
  9. ピリジン-ホウ素ラジカルの合成的応用
  10. 斬新な官能基変換を可能にするパラジウム触媒

関連商品

注目情報

注目情報

最新記事

アメリカ大学院留学:実験TAと成績評価の裏側

前回、アメリカの大学院でのティーチングアシスタント(TA)について、講義TAの様子を紹介しました(ア…

有機合成化学協会誌 紹介記事シリーズ

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

固体NMR

固体NMR(Solid State NMR)とは、核磁気共鳴 (NMR) 分光法の一種で固体そのもの…

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

Chem-Station Twitter

PAGE TOP