[スポンサーリンク]

化学者のつぶやき

非天然アミノ酸触媒による立体選択的環形成反応

非天然アミノ酸誘導体により触媒される三分子間での新たなジアステレオ、エナンチオ選択的環化反応が開発された。環状天然物の合成において応用が期待される。

プロリンおよびその誘導体を用いた不斉C–C結合形成反応

空気や水への安定性、取り扱いの容易さ、低環境負荷などの利点をもつ有機触媒を用いた反応はここ十数年で急激な発展を見せている(1)。なかでもアミノ酸及びその誘導体は最小の酵素アナログとみなすことができ、酵素と同様化学反応の触媒として働く。プロリンを触媒に用いた分子内(図 1A)および分子間(図 1B)不斉アルドール反応はその代表例である(2)。一方、プロリン誘導体を触媒として、2006年にEndersらがアルデヒドのニトロアルケンへの共役付加を起点とし、共役カルボニル化合物とのジアステレオおよびエナンチオ選択的な三成分連結環化反応を報告した(3)(図 1C)。

今回Cossíoらは自らが開発したプロリン誘導体XL(4)を触媒に用いた、ケトン、ニトロアルケンおよびカルボン酸間での共役付加反応を起点とする新奇三成分環形成反応を見出したので紹介する(図 1D)。本手法を用いると3つのキラル中心を有する二環式化合物4を立体選択的に合成できる。

図1. プロリン触媒の不斉C–C結合形成反応と今回紹介する反応

 

New Three-Component Enantioselective Cyclization Reaction Catalyzed by Unnatural Amino Acid Derivative

Retamosa, M. de G.; Ruiz-Olalla, A.; Bello, T.; de Cózar, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2017, Early view.

DOI: 10.1002/anie.201708952

論文著者の紹介

研究者: Fernando P. Cossío

研究者の経歴:
1977–1982 B.S., University of Zaragoza, Spain.
1984–1986 Ph.D., University of the Basque Country (UPV/EHU) (Prof. C. Palomo)
1987–1988 Posdoc, CNRS, France (Dr. J.–P. Picard)
1988– Professor, University of the Basque Country (UPV/EHU) (including short stay, UCLA, K. N. Houk, 1994)
2002– Professor (Catedrático), University of the Basque Country (UPV/EHU)
研究内容:ペリ環状反応、C–C結合形成反応、メディシナルケミストリー、計算化学

論文の概要

本反応は過剰量のケトン1、カルボン酸2をニトロアルケン3に対しXLを20 mol%加え無溶媒条件下、45 ℃で反応させることで環化付加体4を生成する(図 2A)。

1として、テトラヒドロ(チオ)ピラノン(X = O or S)を用いても本反応は進行する。脂肪族および芳香族カルボン酸の両方で反応が進行するが、前者の場合は収率が低下する。ニトロアルケンとしては電子不足、電子豊富なニトロスチレン誘導体のどちらも反応に適用可能である。また、プロリンやTMSプロリノール類を触媒とした際、4は生成せず、マイケル付加体のみが得られる。

重酸素ラベル化やDFT計算等の機構解析より、以下のような反応機構が提唱されている(図 2B)。

  1. XL1によるINT1形成
  2. INT13に対する共役付加
  3.  2INT2への付加
  4. INT3の脱水
  5. INT4での分子内転位
  6. INT5の環化
  7. 触媒再生および目的物4の生成

という機構である。高いエナンチオ選択性が現れる理由として、著者らはINT13が反応する際の面選択性において、XL上のニトロ基とINT2の二トロン酸部位との相互作用が重要であると述べている(図 2C TS1)。

なぜXLを触媒とした際のみINT2に対するカルボン酸2の付加が進行するかに興味がもたれるが、遷移状態の最適構造(図 2C TS2)は示されているものの、文中での言及はされていない。このステップにおけるXLの詳細な効果の解明は、本手法のさらなる発展に寄与すると考えられる。

図2. 基質適用範囲(A)推定反応機構(B)遷移状態TS1 & TS2(C)

参考文献

  1. MacMillan, D. W. C. Nature 2008, 455, 304. DOI: 1038/nature07367.
  2. (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 197110, 496. DOI: 10.1002/anie.197104961. (b) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y..
  3. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. DOI: 1038/nature04820.
  4. Conde, E.; Bello, D.; de Cózar, A.; Sánchez, M.; Vázquez, M. A.; Cossío, F. P. Chem. Sci. 2012, 3, 1486. DOI: 10.1039/C2SC20199B.

関連書籍

The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。
山口 研究室

最新記事 by 山口 研究室 (全て見る)

関連記事

  1. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  2. 有機合成化学の豆知識botを作ってみた
  3. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  4. 高専の化学科ってどんなところ? -その 2-
  5. マダンガミンの網羅的全合成
  6. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  7. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  8. 第7回HOPEミーティング 参加者募集!!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 理研:23日に一般公開、「実験ジャー」も登場--和光 /埼玉
  2. 未解明のテルペン類の生合成経路を理論的に明らかに
  3. イナミドを縮合剤とする新規アミド形成法
  4. 「不斉化学」の研究でイタリア化学会主催の国際賞を受賞-東理大硤合教授-
  5. 福井 謙一 Kenichi Fukui
  6. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  7. 梅干し入れると食中毒を起こしにくい?
  8. 水素化ホウ素ナトリウム Sodium Borohydride
  9. 大学入試のあれこれ ②
  10. 大阪・池田 リチウム電池の実験中に爆発事故

関連商品

注目情報

注目情報

最新記事

鉄カルベン活性種を用いるsp3 C-Hアルキル化

2017年、イリノイ大学 M. Christina Whiteらは鉄フタロシアニン触媒から生成するメ…

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP