[スポンサーリンク]

化学者のつぶやき

非天然アミノ酸触媒による立体選択的環形成反応

[スポンサーリンク]

非天然アミノ酸誘導体により触媒される三分子間での新たなジアステレオ、エナンチオ選択的環化反応が開発された。環状天然物の合成において応用が期待される。

プロリンおよびその誘導体を用いた不斉C–C結合形成反応

空気や水への安定性、取り扱いの容易さ、低環境負荷などの利点をもつ有機触媒を用いた反応はここ十数年で急激な発展を見せている(1)。なかでもアミノ酸及びその誘導体は最小の酵素アナログとみなすことができ、酵素と同様化学反応の触媒として働く。プロリンを触媒に用いた分子内(図 1A)および分子間(図 1B)不斉アルドール反応はその代表例である(2)。一方、プロリン誘導体を触媒として、2006年にEndersらがアルデヒドのニトロアルケンへの共役付加を起点とし、共役カルボニル化合物とのジアステレオおよびエナンチオ選択的な三成分連結環化反応を報告した(3)(図 1C)。

今回Cossíoらは自らが開発したプロリン誘導体XL(4)を触媒に用いた、ケトン、ニトロアルケンおよびカルボン酸間での共役付加反応を起点とする新奇三成分環形成反応を見出したので紹介する(図 1D)。本手法を用いると3つのキラル中心を有する二環式化合物4を立体選択的に合成できる。

図1. プロリン触媒の不斉C–C結合形成反応と今回紹介する反応

 

New Three-Component Enantioselective Cyclization Reaction Catalyzed by Unnatural Amino Acid Derivative

Retamosa, M. de G.; Ruiz-Olalla, A.; Bello, T.; de Cózar, A.; Cossío, F. P. Angew. Chem., Int. Ed. 2017, Early view.

DOI: 10.1002/anie.201708952

論文著者の紹介

研究者: Fernando P. Cossío

研究者の経歴:
1977–1982 B.S., University of Zaragoza, Spain.
1984–1986 Ph.D., University of the Basque Country (UPV/EHU) (Prof. C. Palomo)
1987–1988 Posdoc, CNRS, France (Dr. J.–P. Picard)
1988– Professor, University of the Basque Country (UPV/EHU) (including short stay, UCLA, K. N. Houk, 1994)
2002– Professor (Catedrático), University of the Basque Country (UPV/EHU)
研究内容:ペリ環状反応、C–C結合形成反応、メディシナルケミストリー、計算化学

論文の概要

本反応は過剰量のケトン1、カルボン酸2をニトロアルケン3に対しXLを20 mol%加え無溶媒条件下、45 ℃で反応させることで環化付加体4を生成する(図 2A)。

1として、テトラヒドロ(チオ)ピラノン(X = O or S)を用いても本反応は進行する。脂肪族および芳香族カルボン酸の両方で反応が進行するが、前者の場合は収率が低下する。ニトロアルケンとしては電子不足、電子豊富なニトロスチレン誘導体のどちらも反応に適用可能である。また、プロリンやTMSプロリノール類を触媒とした際、4は生成せず、マイケル付加体のみが得られる。

重酸素ラベル化やDFT計算等の機構解析より、以下のような反応機構が提唱されている(図 2B)。

  1. XL1によるINT1形成
  2. INT13に対する共役付加
  3.  2INT2への付加
  4. INT3の脱水
  5. INT4での分子内転位
  6. INT5の環化
  7. 触媒再生および目的物4の生成

という機構である。高いエナンチオ選択性が現れる理由として、著者らはINT13が反応する際の面選択性において、XL上のニトロ基とINT2の二トロン酸部位との相互作用が重要であると述べている(図 2C TS1)。

なぜXLを触媒とした際のみINT2に対するカルボン酸2の付加が進行するかに興味がもたれるが、遷移状態の最適構造(図 2C TS2)は示されているものの、文中での言及はされていない。このステップにおけるXLの詳細な効果の解明は、本手法のさらなる発展に寄与すると考えられる。

図2. 基質適用範囲(A)推定反応機構(B)遷移状態TS1 & TS2(C)

参考文献

  1. MacMillan, D. W. C. Nature 2008, 455, 304. DOI: 1038/nature07367.
  2. (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 197110, 496. DOI: 10.1002/anie.197104961. (b) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y..
  3. Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. DOI: 1038/nature04820.
  4. Conde, E.; Bello, D.; de Cózar, A.; Sánchez, M.; Vázquez, M. A.; Cossío, F. P. Chem. Sci. 2012, 3, 1486. DOI: 10.1039/C2SC20199B.

関連書籍

[amazonjs asin=”4759813829″ locale=”JP” title=”有機分子触媒の化学: 計測技術の新展開と広がる応用 (CSJ Current Review)”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2008年イグノーベル賞決定!
  2. 化学研究ライフハック:Twitter活用のためのテクニック
  3. 液体ガラスのフシギ
  4. 尿から薬?! ~意外な由来の医薬品~ その1
  5. 分子研「第139回分子科学フォーラム」に参加してみた
  6. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  7. ブロッコリー由来成分「スルフォラファン」による抗肥満効果の分子機…
  8. Ph.D.化学者が今年のセンター試験(化学)を解いてみた

注目情報

ピックアップ記事

  1. 科学論文を出版するエルゼビアとの購読契約を完全に打ち切ったとカリフォルニア大学が発表
  2. 来年の応募に向けて!:SciFinder Future Leaders 2018 体験記
  3. Cleavage of Carbon-Carbon Single Bonds by Transition Metals
  4. 化学は切手と縁が深い
  5. 硫黄の化学状態を高分解能で捉える計測技術を確立-リチウム硫黄電池の反応・劣化メカニズムの解明に期待-
  6. 可逆的に解離・会合を制御可能なサッカーボール型タンパク質ナノ粒子 TIP60の開発
  7. タミフル―米国―厚労省 疑惑のトライアングル
  8. ウルマンカップリング Ullmann Coupling
  9. 新型コロナウイルスの化学への影響
  10. リモートワークで結果を出す人、出せない人

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP