[スポンサーリンク]

ケムステニュース

AIで世界最高精度のNMR化学シフト予測を達成

[スポンサーリンク]

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特別研究員らの研究チームは、機械学習アルゴリズムの探索により、核磁気共鳴(NMR)化学シフトの予測を世界最高精度で達成した(理研プレスリリース9月12日)

NMRの化学シフト値を量子化学計算を用いて予測することはよく行われており、ChemDrawなどの構造式作画ツールでも簡単に化学シフト値を確認することができます。しかしながら、予測値を割り出す量子化学計算と実測値の間には多くの誤差があり、精度が高い予測値を得ることは容易ではありませんでした。そこで本研究では、量子化学計算と機械学習の組み合わせによりこの誤差を学習・補正することで、高精度に化学シフトを予測する手法を開発したそうです。

具体的には、

  1. 多様な化学構造を持つ150の化合物の化学シフト値をNMRによって実測、構造を同定
  2. NMRを測定した化合物の化学シフト値とスピン結合数を量子化学計算によって算出
  3. 実測と計算の誤差を目的変数Y、理論化学シフト、溶媒、結合定数などを説明変数Xとして機械に学習
  4. 91種類のアルゴリズムを使って計算の補正値を割り出し、実測値と比較・評価
  5. 学習に使用していない34の標品化合物と既報の海藻成分を使ってシグナル予測・帰属の汎用性を検証

ということを行った結果、5の従来の量子化学計算のみの手法および機械学習のみの手法よりも精度の高い、世界最高精度の化学シフトの予測が可能であることが明らかになりました。

研究の概要(引用:理研プレスリリース

学習に使用した150の化学物は、分子量がメチルアミン(31.058)から4-ニトロフェノール(139.110)までのC,H,O,S,Pを含む分子です。一方、5の検証に使った化合物は、(S)-2-Methylmalate(148.114)からL-Tyrosine(181.191)までのC,H,O,Sを含む低分子とヒジキの有機成分を使ったそうです。アルゴリズム別の平均誤差を示したグラフが、下の図であり、各アルゴリズムでの平均誤差を1Hと13Cでグラフに示されています。その結果をもとにアルゴリズムの評価を可視化したのが下部の図であり、図の中央青色で書かれているアルゴリズムが化学シフト値の予測に適していると言えます。

機械学習アルゴリズムの探索による化学シフト予測精度比較(引用:理研プレスリリース

下の図は従来法と本研究のNMR化学シフト予測法の精度の比較した図で、左側は34の化合物の13C化学シフト値の誤差を量子化学計算(上)Mnovaの機械学習(中央)本研究(下)で比較した結果です。量子化学計算、Mnovaの機械学習では低磁場側で誤差が見えるものの、本研究ではそこが特に改善されています。右側の図は海藻成分のシグナルの量子化学計算(×)と本研究(*)を帰属付きでプロットしたものです。拡大されているTMAとβ-Glcのシグナルから本研究の手法実測値に近いポイントを示していることがわかります。

従来法と本研究のNMR化学シフト予測法の精度の比較(引用:理研プレスリリース

NMRは試料調製が簡単であることから分析データの蓄積に適しているため、この研究手法の応用範囲を広げるために、データの蓄積と応用範囲の探索が今後期待されます。本研究では、化学構造と分析値を計算+機械学習で補正していますが、化学構造と化学的物理的特性をも補正できるようになれば、企業では実験評価の時間とコストを最小限にすることができるため大変役に立つと考えられます。このようにAIやビックデータ解析は、化学の世界でもいろいろな応用が期待されていて、その中でも分かりやすい研究結果の一つだと思いました。

関連書籍

[amazonjs asin=”B075M3YFB4″ locale=”JP” title=”人工知能はこうして創られる”] [amazonjs asin=”4840814015″ locale=”JP” title=”AI創薬・ビッグデータ創薬”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 旭硝子が新中期計画、液晶・PDPガラス基板事業に注力
  2. 第46回藤原賞、岡本佳男氏と大隅良典氏に
  3. ねじれがあるアミド
  4. 富山化学とエーザイ 抗リウマチ薬(DMARD)T-614を国内申…
  5. 抗アレルギー薬「アレジオン」の販売、BIに一本化
  6. 人工タンパク質、合成に成功 北陸先端大、エイズ薬剤開発に道
  7. ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」…
  8. 健康食品から未承認医薬成分

注目情報

ピックアップ記事

  1. 留学せずに英語をマスターできるかやってみた(6年目)(留学後編)
  2. 配位子保護金属クラスターを用いた近赤外―可視光変換
  3. 第10回 野依フォーラム若手育成塾
  4. 北原武 Takeshi Kitahara
  5. 赤色発光する希土類錯体で植物成長促進の実証に成功
  6. ビールに使われている炭水化物を特定する方法が発見される
  7. スティーブン・リパード Stephen J. Lippard
  8. 企業研究者のためのMI入門①:MI導入目的の明確化と使う言語の選定が最初のポイント!
  9. 極小の「分子ペンチ」開発
  10. デヴィッド・エヴァンス David A. Evans

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年9月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP