[スポンサーリンク]

一般的な話題

電気化学ことはじめ(2) 電位と電流密度

[スポンサーリンク]

前回の記事ではざっくりと測定をするために必要なセットアップについて紹介しました。今回はもうちょっと原理的なところに立ち返って、測定で実際に観測される電位と電流密度について説明していきます。

そもそも酸化還元反応とは?

さて確認ですが、水は常温で放っておくと水素と酸素に分かれるでしょうか?答えはNoです。室温での地球上には非常に多くの水が存在していますよね。水を水素と酸素に分ける反応は吸熱的であり、実に1.23 eVもの電位が熱力学的に必要です。実際に水を電気分解するにあたっては多電子反応であるために速度論的に遅く、より大きな電位差が必要となります。ここからわかることとして、酸化還元試薬を用いる化学反応においては、ほぼ発熱的な条件下において実験を行うことが必要となります。分子系の反応では電位を制御することができないので、”強い”酸化剤、”強い”還元剤が必要となってきます。例えば、酸化剤のニトロソシウムと還元剤のナフタレニドを使うときには、脱水処理や色々準備が必要かと思います。一方で、それぞれの1電子移動に伴う酸化還元電位はフェロセン/フェロセニウムの酸化還元電位を基準として、+1 V vs. Fc/Fc+、-3 V vs. Fc/Fc+であることが知られています。それでは”強い”と”弱い”ってなんでしょうか?

図1.典型的な酸化還元試薬の電位。数字は文献1より借用。

強い、弱いを規定するための電位 -電位とpHの類似性-

さきほどの”強い”、”弱い”を規定するために、重要となるのが電位です。変な例ではありますが、寒い、暑いという感覚的なパラメータを説明するためには温度が必要となり、そのためには絶対零度や0度などといった基準が必要となります。同様の議論で電位を規定するためには基準が必要となり、理論的な一つの基準は真空準位です。真空準位は荷電粒子が周りからのクーロン相互作用を感じない状態で運動エネルギーが0の状態として定義され、そこからの相対的なエネルギーとして電位が規定されます。先程の温度との類似性という意味では真空準位は絶対零度、適当な参照電極というのは摂氏温度や華氏温度に相当します。また電位と電圧は違っており、それらの差は絶対的であるか、相対的であるかという点です。

それでは電位のアナロジーとして緩衝溶液のpHの概念から説明していきます。Henderson-Hasselbalchの式とNernstの式を並べてみます。

 {\rm pH = pKa+log{[A^-]\over[HA]}}

  {\rm E = E_0+{RT\over nF}ln{a_{ox}\over a_{red}}}

あれ??、というくらいほぼ同じです。緩衝溶液では酸と共役塩基の割合を10倍変化させるとpHが1ずれますが、電気化学では酸化還元体の濃度比は10倍変化させると59 mV電位が変わります。そして重要なことに酸塩基あるいは酸化体還元体の濃度比を変えることによりpHあるいは電位を精密に変えることができます。

それでは考え方を変えてみましょう。酸化体と還元体の濃度比を変化させたい(反応させたい)ときには酸化反応であれば、酸化体の濃度を高くすることが必要になります。このことはNernst式から考えると、基準となる酸化還元電位より高い電位に電位を設定することにより、自発的に酸化反応が進行するということに相当します。一方で還元体においては、還元体の濃度を高くしたいので、基準となる酸化還元電位より低い電位に設定することにより、自発的に還元反応を進行することが可能となります。

さてそれでは電気化学が得意としている電極と分子系に対して話をもどしましょう。電気化学がの特異性としては電極の有する電極電位を自由自在に変化することができるという点です。電気化学電位を掃引することによって、電子の有するエネルギーを自由自在に変化させて、分子の持っている酸化還元電位をプローブする、あるいは酸化還元反応を引き起こすことによって化学反応を促進することが可能です。

反応のしやすさを定義するための電流密度

上では反応させるための必要条件としての電位のみ話してきましたが、実際には電流密度として単位面積当たりにどの程度の数の電荷がどの程度の時間に流れたかを定義することが必要となってきます。前回の記事で対極に必要な条件として作用極の数倍程度の大きさを有する電極が必要となると書いたと思いますが、本質的に電流密度の考え方が必要となってきます。あくまで電気化学計測は電気回路をつくって、その中での酸化還元反応を利用した電子の回路を観測するものです。そのため、作用極で行われた化学反応に関与する電子は必ず対極でも同じ数必要となります。庭に水をまくときにホースの先端を小さくすると、出てくる水の勢いが強くなるような感じで、それは断面積が小さいからです。電子の数を単位時間あたりで割ったものが電流に相当しますが、電極面積が多い場合には、一つのサイトあたりでの単位時間あたりでの反応電子数が低くなります。一方で、電極面積が仮に非常に狭い場合には、単位面積あたりでの反応する電流が多くなってしまい、結果的に副次的な反応が必要となってきます。そのために腐食や溶解等といった副次的な反応が起こってしまい、系を荒らす原因となりかねません。ですので、いわゆる反応で使うTOFのような概念と同じ形で、電流密度を規定する必要があります。

まとめると

そもそも酸化還元反応を起こすために必要な電位と電流密度に対して概略しました。次回はポテンショスタットの中身と典型的なCVで何を計測しているのかに関して話をする予定です。

参考文献

1 Neil G. Connelly and William E. Geiger, Chem. Rev. 1996, 96, 2, 877–910. DOI: 10.1021/cr940053x

はいぶりっど。

投稿者の記事一覧

はいぶりっど化学者。好きな言葉は"The sky is not limited"

関連記事

  1. サイエンスアゴラ2014総括
  2. 動画で見れる!アメリカ博士留学生の一日
  3. 有機合成化学協会誌2019年12月号:サルコフィトノライド・アミ…
  4. 小さなフッ素をどうつまむのか
  5. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(…
  6. Post-Itのはなし ~吸盤ではない 2~
  7. ルィセンコ騒動のはなし(前編)
  8. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞201…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  2. ホウ素-ジカルボニル錯体
  3. (−)-Salinosporamide Aの全合成
  4. ペロブスカイト太陽電池が直面する現実
  5. 投票!2014年ノーベル化学賞は誰の手に??
  6. 生物のデザインに学ぶ-未来をひらくバイオミメティクス-に行ってきました!
  7. 磁気ナノ粒子でガン細胞を選別する
  8. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏
  9. スナップ試薬 SnAP Reagent
  10. 2016年8月の注目化学書籍

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

Chem-Station Twitter

PAGE TOP