[スポンサーリンク]

一般的な話題

電気化学ことはじめ(2) 電位と電流密度

[スポンサーリンク]

前回の記事ではざっくりと測定をするために必要なセットアップについて紹介しました。今回はもうちょっと原理的なところに立ち返って、測定で実際に観測される電位と電流密度について説明していきます。

そもそも酸化還元反応とは?

さて確認ですが、水は常温で放っておくと水素と酸素に分かれるでしょうか?答えはNoです。室温での地球上には非常に多くの水が存在していますよね。水を水素と酸素に分ける反応は吸熱的であり、実に1.23 eVもの電位が熱力学的に必要です。実際に水を電気分解するにあたっては多電子反応であるために速度論的に遅く、より大きな電位差が必要となります。ここからわかることとして、酸化還元試薬を用いる化学反応においては、ほぼ発熱的な条件下において実験を行うことが必要となります。分子系の反応では電位を制御することができないので、”強い”酸化剤、”強い”還元剤が必要となってきます。例えば、酸化剤のニトロソシウムと還元剤のナフタレニドを使うときには、脱水処理や色々準備が必要かと思います。一方で、それぞれの1電子移動に伴う酸化還元電位はフェロセン/フェロセニウムの酸化還元電位を基準として、+1 V vs. Fc/Fc+、-3 V vs. Fc/Fc+であることが知られています。それでは”強い”と”弱い”ってなんでしょうか?

図1.典型的な酸化還元試薬の電位。数字は文献1より借用。

強い、弱いを規定するための電位 -電位とpHの類似性-

さきほどの”強い”、”弱い”を規定するために、重要となるのが電位です。変な例ではありますが、寒い、暑いという感覚的なパラメータを説明するためには温度が必要となり、そのためには絶対零度や0度などといった基準が必要となります。同様の議論で電位を規定するためには基準が必要となり、理論的な一つの基準は真空準位です。真空準位は荷電粒子が周りからのクーロン相互作用を感じない状態で運動エネルギーが0の状態として定義され、そこからの相対的なエネルギーとして電位が規定されます。先程の温度との類似性という意味では真空準位は絶対零度、適当な参照電極というのは摂氏温度や華氏温度に相当します。また電位と電圧は違っており、それらの差は絶対的であるか、相対的であるかという点です。

それでは電位のアナロジーとして緩衝溶液のpHの概念から説明していきます。Henderson-Hasselbalchの式とNernstの式を並べてみます。

 {\rm pH = pKa+log{[A^-]\over[HA]}}

  {\rm E = E_0+{RT\over nF}ln{a_{ox}\over a_{red}}}

あれ??、というくらいほぼ同じです。緩衝溶液では酸と共役塩基の割合を10倍変化させるとpHが1ずれますが、電気化学では酸化還元体の濃度比は10倍変化させると59 mV電位が変わります。そして重要なことに酸塩基あるいは酸化体還元体の濃度比を変えることによりpHあるいは電位を精密に変えることができます。

それでは考え方を変えてみましょう。酸化体と還元体の濃度比を変化させたい(反応させたい)ときには酸化反応であれば、酸化体の濃度を高くすることが必要になります。このことはNernst式から考えると、基準となる酸化還元電位より高い電位に電位を設定することにより、自発的に酸化反応が進行するということに相当します。一方で還元体においては、還元体の濃度を高くしたいので、基準となる酸化還元電位より低い電位に設定することにより、自発的に還元反応を進行することが可能となります。

さてそれでは電気化学が得意としている電極と分子系に対して話をもどしましょう。電気化学がの特異性としては電極の有する電極電位を自由自在に変化することができるという点です。電気化学電位を掃引することによって、電子の有するエネルギーを自由自在に変化させて、分子の持っている酸化還元電位をプローブする、あるいは酸化還元反応を引き起こすことによって化学反応を促進することが可能です。

反応のしやすさを定義するための電流密度

上では反応させるための必要条件としての電位のみ話してきましたが、実際には電流密度として単位面積当たりにどの程度の数の電荷がどの程度の時間に流れたかを定義することが必要となってきます。前回の記事で対極に必要な条件として作用極の数倍程度の大きさを有する電極が必要となると書いたと思いますが、本質的に電流密度の考え方が必要となってきます。あくまで電気化学計測は電気回路をつくって、その中での酸化還元反応を利用した電子の回路を観測するものです。そのため、作用極で行われた化学反応に関与する電子は必ず対極でも同じ数必要となります。庭に水をまくときにホースの先端を小さくすると、出てくる水の勢いが強くなるような感じで、それは断面積が小さいからです。電子の数を単位時間あたりで割ったものが電流に相当しますが、電極面積が多い場合には、一つのサイトあたりでの単位時間あたりでの反応電子数が低くなります。一方で、電極面積が仮に非常に狭い場合には、単位面積あたりでの反応する電流が多くなってしまい、結果的に副次的な反応が必要となってきます。そのために腐食や溶解等といった副次的な反応が起こってしまい、系を荒らす原因となりかねません。ですので、いわゆる反応で使うTOFのような概念と同じ形で、電流密度を規定する必要があります。

まとめると

そもそも酸化還元反応を起こすために必要な電位と電流密度に対して概略しました。次回はポテンショスタットの中身と典型的なCVで何を計測しているのかに関して話をする予定です。

参考文献

1 Neil G. Connelly and William E. Geiger, Chem. Rev. 1996, 96, 2, 877–910. DOI: 10.1021/cr940053x

はいぶりっど。

投稿者の記事一覧

はいぶりっど化学者。好きな言葉は"The sky is not limited"

関連記事

  1. 2018年 (第34回)日本国際賞 受賞記念講演会のお知らせ
  2. 配位子で保護された金クラスターの結合階層性の解明
  3. 合成化学者十訓
  4. タミフルの効果
  5. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  6. 第100回有機合成シンポジウム記念特別講演会に行ってきました
  7. 21世紀に入り「世界同時多発研究」は増加傾向に
  8. 【Spiber】タンパク質 素材化への挑戦

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. グロブ開裂 Grob Fragmentation
  2. ウラジミール・ゲヴォルギャン Vladimir Gevorgyan
  3. 【PR】 Chem-Stationで記事を書いてみませんか?【スタッフ募集】
  4. 天然物の生合成に関わる様々な酵素
  5. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 Hajos-Parrish-Eder-Sauer-Wiechert Reaction
  6. 最強の文献管理ソフトはこれだ!
  7. π拡張ジベンゾ[a,f]ペンタレン類の合成と物性
  8. 目指せ!! SciFinderマイスター
  9. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  10. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁石の巻

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
« 8月   10月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP