[スポンサーリンク]

一般的な話題

Micro Flow Reactor ~革新反応器の世界~ (入門編)

[スポンサーリンク]

Tshozoです。

ケムステではこれまでに何度かフロー合成()に関して記載がありましたが、今回はもう少し初歩的なところを出発点に書いてみようと思います。お付き合いください。(冒頭図はこちらの論文より)

フロー合成・マイクロリアクターの概要

フロー合成法をざっくり定義すると、「連続的な流れ場において化学反応を進行させ、目的物を合成する方法」のことです。その中でもマイクロリアクターは、より狭い場での反応を利用し、目的物を合成する反応器になります。

FC_09

フローリアクター(左)・マイクロリアクター(右)の例
こちらの資料より引用

なお、これまでの化学界ではバッチ合成が主流。基本はお料理です。素材を順序と火加減を決めてでっかい鍋で煮て、蓋を開けて取り出して、洗って生成物を取り出す。終わったら次のカレー原料を仕込む、というような流れ。これらは条件さえ決まればドカッと楽に目的物が合成出来るうえ、大概の場合装置が安いため、スケールアップのノウハウさえあれば量産化もそれなりに出来るというメリットがありました。

一方、フロー合成。実例が無かったわけではありません。たとえばハーバー・ボッシュ法。ハーバーと助手のル・ロシニョールが創り上げた反応器はまさにフロー合成・フローリアクターのはしりであり、その原型は100年以上も前に萌芽していたわけです。その他、石油化学に近いところやPP、PEといったMass Chemical、つまりプラント稼働率をとにかく上げてコスト競争力を持たせたいようなケースでもフロー合成は使われています。

FC_04

アンモニア合成器 レプリカ(BASFの資料より引用)
ハーバーが行ったこの装置のデモをBASFのミタッシュが見とどけた

ですが上記は比較的単純な構成のものが生成物であり、最終物が医薬品や精密合成品の分野では今なおバッチ合成が主流であることは否めません。上記の理由に加えて鍋があればカレーもシチューも豚汁も作れるように、いろんな反応に適用できるし、掃除がしやすいし、とりあえず混ぜときゃ収率はともかくだいたい大量に合成できることが大きなメリットであることは言うまでもないでしょう。

バッチからフロー、さらにマイクロへ

しかし、精密合成・反応制御と言いながらいつまでも鍋で煮てていいのか、ってことで2002年あたりからフロー合成の機運はこんな感じで高まっています↓。今回取り上げるのはそのうち「マイクロリアクター」をツールとして用いるものです。

FC_02
特にマイクロリアクターの論文数伸びがすごい こちらから引用

・・・言葉で書いててもアレなので、ざっくり下記のようなものを載せてみます。

FC_07

こういう小型のものから・・・

FC_06

こういう大型の多連化したものまである(上の写真が流路、下のが組上げたもの)
実際にこれらの装置を利用して合成される市販薬品類がそこそこある模様
いずれもこちらの資料より引用

欧州ではこうしたマイクロフロー合成装置の開発が盛んなようで、グラーツ工科大学、アイデンホーベン大学などで化学企業と組んでの研究が盛んに行われているとのこと。日本でも市販品としてYMC社、中村超硬社、テクニスコ社等が販売しています。

で、こうした反応器や手法の何がうれしいのか。色々な資料に様々に記述されていますが、たとえばオランダ最大の化学会社、DSM(元オランダ石炭公社)が提唱する「フロー合成」のメリットは、下記4点にまとめられています。

苛烈な条件でも安全に反応させられること (Safe use of extreme reaction conditions)
開発期間の短縮 (Reduced development time)
反応制御性の向上 (Improved process control)
製造コストの低減 (Reduced production costs)

さらに「マイクロ」フローリアクターとなると、反応部をより狭い空間に閉じ込めてその制御をより精密に行うことを狙ったものになり、そのような研究論文はこれまでにも多く登場しております。

今後の展開

マイクロフロー合成はそれぞれの個別反応を細かく制御出来ることが持ち味です。こうした個別反応を開発することもそうなのですが、最終的にはこれらの反応器を多数含むリアクターとして、「モジュール化」が進むような気がしています。そうだとすると、反応 ルートマップでマイルストーン的な反応物があって、それに従った反応モジュールが出来、そのモジュールの組み合わせだけで所望の医薬品や精密合成品が出来ていく、という夢のような反応器が出来上がっていくことになりそうなのですが・・・。

FC_10

たとえばこんな感じで複雑な反応も原理的には組上げられる
こちらの論文より引用

ただフロー合成最大の懸念は“詰まり”Constriction/Cloggingと呼ばれる現象で、生成物がキチンと溶媒にとけてくれればいいのですが、例えば下記のように固形物が出てくるようなケースだとこれは難儀です。

FC_05

たとえばこの単純な反応でも反応壁に析出しようもんなら
圧損がガンガン上がり最終的にはドン詰まりになってしまう(リンクこちら

そのほか、ちょっとしたチリでも原料やプロセスに入ったり生成してしまうと詰まって全部止まってしまうわけで。もちろん手前にフィルタかますとかメインポイントでバイパスするとかパラレル化するとかのやり方で色々対応することが出来るでしょうが、管理的にはなかなか難儀な問題となりそうな。ここらへんもどう技術的に目途をつけていくか、非常に興味のあるところであります。素人の思いつきレベルでは、詰まりに対して超音波を定期的に当てるとかどうかな、と思ったりしましたが既にそういう技術あるんですね、はい。実際にChemtrex社などそこらへん解決して大量合成を実証してるようですから、今までできなかった反応等を進められるツールとしての発展は益々進んでいくことでしょう。

 

参考文献

・”PI Technology Update on Microreactors”  リンクこちら
・”Microreactors in Discovery and Development” リンクこちら
・”Microreactors and Microfluidic Cells in Organic Synthesis” リンクこちら
・”The past, present and potential for microfluidic reactor technology in chemical synthesis” リンクこちら

関連書籍

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 【5月開催】第八回 マツモトファインケミカル技術セミナー 有機金…
  2. 自由研究にいかが?1:ルミノール反応実験キット
  3. フローケミストリーーChemical Times特集より
  4. 【24卒 化学業界就活スタート講座 5月15日(日)Zoomウェ…
  5. 軸不斉のRとS
  6. メソポーラスシリカ(1)
  7. ピンナ酸の不斉全合成
  8. 第18回次世代を担う有機化学シンポジウム

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. DNAのもとは隕石とともに
  2. 論文をグレードアップさせるーMayer Scientific Editing
  3. 【東日本大震災より10年】有機合成系研究室における地震対策
  4. 世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!
  5. 多摩霊園
  6. 有機合成化学協会誌2021年7月号:PoxIm・トリアルキルシリル基・金触媒・アンフィジノール3・効率的クリック標識法・標的タンパク質指向型天然物単離
  7. お望みの立体構造のジアミン、作ります。
  8. ビタミンB1塩酸塩を触媒とするぎ酸アミド誘導体の合成
  9. 香料化学 – におい分子が作るかおりの世界
  10. 立体規則性および配列を制御した新しい高分子合成法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

先端領域に携わりたいという秘めた思い。考えてもいなかったスタートアップに叶う場があった

研究職としてキャリアを重ねている方々の中には、スタートアップは企業規模が小さく不安定だからといった理…

励起パラジウム触媒でケトンを還元!ケチルラジカルの新たな発生法と反応への応用

第 611 回のスポットライトリサーチは、(前) 乙卯研究所 博士研究員、(現) 北海道大学 化学反…

“マブ” “ナブ” “チニブ” とかのはなし

Tshozoです。件のことからお薬について相変わらず色々と調べているのですが、その中で薬の名…

【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ素試薬を世界で初めて作れたのか!?

世界初のNH2基含有超原子価ヨウ素試薬開発の裏側を探った原著論文Amino-λ3-iodan…

千葉 俊介 Shunsuke Chiba

千葉俊介 (ちばしゅんすけ、1978年05月19日–)は日本の有機化学者である。シンガポール南洋理⼯…

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた…

シモン反応 Simon reaction

シモン反応 (Simon reaction) は、覚醒剤の簡易的検出に用いられる…

Marcusの逆転領域で一石二鳥

3+誘導体はMarcusの逆転領域において励起状態から基底状態へ遷移することが実証された。さらに本錯…

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP