[スポンサーリンク]

スポットライトリサーチ

高分子固体電解質をAIで自動設計

[スポンサーリンク]

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山 歓(はたけやま かん)講師にお願いしました。

小柳津・須賀研究室では、新しい機能性高分子の創出を目指しており、その例として、レドックス反応に基づき電気や水素を可逆に貯められるポリマー、光学材料、ホール輸送材料、機能性コーティングなどを研究しています。ゴムのように伸びる二次電池など、ポリマーの特性を活かしたユニークなエネルギーデバイスも報告してきました。最近はデータ科学を活用した材料開発(マテリアルズ・インフォマティクス)にも取り組んでいます。

本プレスリリースはAIを用いた固体電解質の設計についてで、AIを用いた分子設計はいろいろな分野で利用が検討されていますが、限られた情報しか学習していないAIは、分子設計の総合的なセンスが欠落することがあり、社会実装には適さない候補構造ばかりが提案されることが大きな課題となっていました。そこでAIを用いたアルゴリズムによって材料が満たすべき分子構造の特徴を自動定義し、さらに膨大な候補群の中から最適な分子設計を富士通の「デジタルアニーラ」で高速抽出する方法の開発を行いました。

この研究成果は、「Macromolecular Rapid Communications」誌およびプレスリリースに公開されています。

Automated Design of Li+-Conducting Polymer by Quantum-Inspired Annealing

Kan Hatakeyama-Sato, Hiroki Adachi, Momoka Umeki, Takahiro Kashikawa, Koichi Kimura, Kenichi Oyaizu

Macromol. Rapid Commun. (2022)
DOI:10.1002/marc.202200385

研究室を主宰されている小柳津 研一 教授より畠山 先生についてコメントを頂戴いたしました!

畠山先生は2018年にレドックス活性ポリマーの合成と二次電池利用に関する研究で学位を取得しました。その後スタッフとして、これまでの研究と並列しながら、新たにマテリアルズ・インフォマティクス(MI)の研究にも取り組んでいます。MIは、機能性高分子の合成をメインテーマに置く当研究室にも新たな切り口を与えています。また、学会発表や多くの論文出版を通じて、畠山先生は当該分野の若手の旗手として、ますます存在感を高めています。今後の更なる研究展開を期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

いわゆるAI技術を駆使して、全固体リチウムイオン電池の部材として使える新しい高分子固体電解質を設計・合成しました。

我々は以前の研究で、分子構造からイオン伝導度を予測可能なAI(教師あり機械学習モデル)を報告しました。今回の研究は「逆問題」と呼ばれるタスクに挑戦し、分子構造そのものをAIに提示させることを目指しました。

一般に逆問題を解くのは困難とされています。現行のAIは特定のデータベースのような限られた情報にしかアクセスできず、人間が講義や実際の研究を通して会得する知識や視点を持てないことが一因です。そのため、AIは特定の性能は優れていていながらも、合成困難・不安定・機械強度が不足といった欠点を持つ、ちぐはぐな分子構造ばかりを提案する傾向にありました。

我々は一旦、こうした要素を明示的にAIに教え込むことを辞めました。あまりにも手間がかかるからです。代わりに、既に実績のある電解質群の分子構造の特徴をAI(教師なし機械学習モデル)に学習させ、そこからインスパイアされた構造を探索することにしました。研究者もしばしば類似構造を起点に分子設計を進めますので、人間臭い(ヒューリスティックな)手法とも言えます。

これにより、伝導度と電解質に必要な基本性質と両立した分子設計をAIを提示できるようになりました。イオン伝導体としては一風変わった構造をしていたものの、全固体電池の電解質として動作可能なことを実験的にも明らかにしました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

機能性高分子の実験研究を専門に学位取得後、データ科学をゼロから勉強しながら研究を進めました。システム実装には回帰モデルに加え、教師無し学習(制限ボルツマンマシン)、深層強化学習(分子生成)、量子アニーリング技術など、古今東西の手法を組み合わせました。研究を通し、未知の分野に挑戦できたことは幸運でした。

AIの勉強が進み、その限界も見えてきました。実験者としては「合成が容易で、高温や電極反応に耐え、強靱で、伝導度もそこそこ高い」高分子が欲しかったのですが、データベースの構築コスト等を踏まえると、その全てをAIに考慮させるのは無理でした。視点を変えたアプローチにより、化学知識を持たないAIであっても、そこそこ洗練された分子設計を提示できるようになり、嬉しく思っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ほぼ無限の組み合わせがある分子設計の中から、種々の仕様に沿った候補構造を抽出する必要があります。これはコンピュータにとっても難題です。対応策として、今回は共著の富士通が開発したデジタルアニーラと呼ばれるマシンを導入しました。量子コンピュータの一種であるアニーラに着想を得た技術で、膨大な組み合わせの中から効率的に解を探索できます。先端技術の導入が、一つの突破口になったと言えます。

また、私は実験屋ですので、一連の手法を「役に立つデータ科学」として昇華し、材料実験での検証に繋げることがミッションです。今回の研究も含め、AI予測が大外れすることは日常茶飯事です。理論と現実の乖離に四苦八苦しながら、好奇心と粘り強さで乗り切っています。

Q4. 将来は化学とどう関わっていきたいですか?

やりたいことのうち、幾つかを列挙します。1人ではとてもカバーできないので、同志やご協力頂ける方を募集中です。

  • プロセスインフォマティクス: 日々の材料実験をデジタル記録クラウド管理し、AIが自動解析するシステムを目指しています。電子実験ノートを世界中の研究者・AIでシェアできたら良いと思いませんか?
  • 量子コンピューティング: ワクワクする技術なので、少しずつ研究中です。
  • 敷居の低いデータ解析ツール: 現状はプログラミングがほぼ必須なので、誰でも使える材料データの解析ツールの整備が必要です。
  • 新規材料の創出: 実験屋として、データ科学の手法、そしてロボット等も使いながら、主にエネルギー・環境問題に貢献できる新材料を作っていきたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

データ科学は特に若い方々にお勧めです。大半の先端研究やプログラムコードはインターネットにアップロードされ、誰でもアクセスできます。プログラミングを体得するには沢山の時間がかかりますが、年を取るほど諸業務が増え、勉強の機会も限られます。よって、時間に余裕のある若者に有利な分野です。

データ科学を学ぶと、日々の実験結果を高速・客観的に処理できるようになるかもしれません。さらには、化学の叡智を学んだ万能AI(!?)や、超絶技巧を持つロボット化学者が出てくる可能性もあります。是非、一緒に新分野に挑戦してくれる人が増えることを期待しています。

研究者の略歴

名前: 畠山 歓

所属: 早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室

職位: 講師(任期付)

経歴など:

2009年4月 – 2013年3月 早稲田大学 先進理工学部 応用化学科 (西出宏之 教授・小柳津研一 教授, 以下同)

2013年4月 – 2015年3月 早稲田大学 先進理工学研究科 応用化学専攻

2015年4月 – 2018年3月 早稲田大学 先進理工学研究科 先進理工学専攻

2018年4月 – 2023年3月 早稲田大学 先進理工学部 応用化学科 講師(任期付)

研究テーマ: 機能性高分子、マテリアルズ・インフォマティクス、有機電気化学

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 最新プリント配線板技術ロードマップセミナー開催発表!
  2. アメリカ化学留学 ”大まかな流れ 編”
  3. 書物から学ぶ有機化学 3
  4. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開…
  5. SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?
  6. 製薬系企業研究者との懇談会
  7. ヒドラジン
  8. 無保護環状アミンをワンポットで多重官能基化する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 実験でよくある失敗集30選|第2回「有機合成実験テクニック」(リケラボコラボレーション)
  2. 2012年ケムステ人気記事ランキング
  3. キラルLewis酸触媒による“3員環経由4員環”合成
  4. コーンブルム酸化 Kornblum Oxidation
  5. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  6. 研究者のためのCG作成術④(レンダリング編)
  7. 理系のための就活ガイド
  8. ITを駆使して新薬開発のスピードアップを図る米国製薬業界
  9. Tattooと化学物質のはなし
  10. たばこと塩の博物館

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

“見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発

第598回のスポットライトリサーチは、九州大学大学院薬学府(平井研究室)博士後期課程3年の森山 貴博…

触媒化学との「掛け算」によって展開される広範な研究

前回の記事でご紹介したとおり、触媒化学融合研究センター(触媒センター)では「掛け…

【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ波プロセスのスケールアップについて

<内容>※本セミナーは、技術者および事業担当者向けです。今年に入って全3回に…

「産総研・触媒化学融合研究センター」ってどんな研究所?

2013年に産総研内に設立された触媒化学融合研究センターは、「触媒化学」を中心に据えつつ、他分野と「…

低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?

第597回のスポットライトリサーチは、北海道大学大学院総合化学院 有機化学第一研究室(鈴木孝紀研)の…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/03/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)

(さらに…)…

日本薬学会第144回年会「有機合成化学の若い力」を開催します!

卒業論文などは落ち着いた所が多いでしょうか。入試シーズンも終盤に差し掛かり、残すところは春休…

ホウ酸団子のはなし

Tshozoです。暇を見つけては相変わらず毎日ツイッターでネタ探しをしているのですが、その中で下…

活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜

第596回のスポットライトリサーチは、東京大学 大学院工学系研究科(山口研究室)修士課程 2年の山口…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP