[スポンサーリンク]

化学者のつぶやき

斬新な官能基変換を可能にするパラジウム触媒

パラジウムを用いるクロスカップリング反応の触媒化学は原初報告が成されてから、既に40年が経とうとしています。

にもかかわらずこの化学は、いまだ有機合成でのホットトピックであり続けており、その発展の勢いは留まるところを知りません。

今回は、そんなパラジウム触媒を用いた、最新鋭の官能基変換をご紹介しましょう。

アリールハライドからアニリンへ

novel_fgconversion_crosscp_6.gif

Palladium-Catalyzed Coupling of Ammonia and Lithium Amide with Aryl Halides
Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 10028. DOI: 10.1021/ja064005t

安価なアンモニアを窒素源とし、保護体を経ずにダイレクトにアニリン誘導体が合成可能です。しかし強塩基が等量必要となってしまう欠点が。もう少し条件が緩めだと嬉しいかな・・・
(訂正:スキームの反応温度は800ではなく80℃です)

アリールハライドからフェノールへ

novel_fgconversion_crosscp_5.gif

The Selective Reaction of Aryl Halides with KOH:  Synthesis of Phenols, Aromatic Ethers, and Benzofurans.
Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694. DOI: 10.1021/ja0639719

穏和な条件下行えるクロスカップリング触媒にてフェノールを合成するには、Buchwald-Hartwig条件にてエーテル(保護フェノール)を得てから脱保護するか、宮浦ホウ素化→酸化プロセスによって合成するしかありませんでした。いずれも多段階変換が必要となります。
しかし水酸化物無機塩とのクロスカップリングを進行させる条件の開発によって、ダイレクトにフェノールの合成が可能になりました。
配位子選択とともに重要なのは塩基のチョイス。水酸化カリウムを用いることが本反応のカギとなっています。たとえばホスフェートやカーボネート系塩基を用いた場合には、ジアリールエーテル生成が優先してしまいます。

アリールフッ素化合物の合成

novel_fgconversion_crosscp_3.gif

Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009325, 1661. doi: 10.1126/science.1178239

医薬・材料分野においてとりわけ幅広い応用性を誇る、フッ素置換有機化合物。塩素化・臭素化・ヨウ素化したものの合成法はよく知られていますが、同じハロゲンでも芳香族フッ化物の合成法、とりわけ基質一般性が高く穏和な条件は限られています。

今回Buchwaldらによって開発されたパラジウム触媒系は、芳香族トリフラートをフッ化物へと一般性高く変換することができます。

金属フルオライド種は多量体を形成しやすく、単量体からの反応が阻害されやすい性質を持つこと、還元的脱離が起こりにくいことなどから、こういった反応形式は不可能に近いと考えられていました。彼らは独自開発した配位子(tBuBrettPhos)を用い、このハードルを克服しました。また、反応中間体たりえる単量体パラジウム(II)フルオライド種の合成・X線結晶構造解析(下図:論文より転載)を行い、実際に還元的脱離を経て芳香族フッ化物への変換が起こる事を示して反応機構に関する示唆を与えています。

novel_fgconversion_crosscp_4.gif

ニトロアリール化合物の合成

novel_fgconversion_crosscp_1.gif

Pd-Catalyzed Conversion of Aryl Chlorides, Tri?ates, and Nona?ates to Nitroaromatics
Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 12898.  doi:10.1021/ja905768k

芳香族ニトロ化合物はニトロニウムカチオンによる求電子置換で合成するのが通例なのですが、位置選択性のコントロールが難しく、また条件がきついため、官能基受容性に欠けます。今回開発されたパラジウム触媒は、アリールハライド・トリフラート・ノナフラートを、選択的にニトロ基置換体へと変換します。添加剤であるTris(3,6-dioxaheptyl)amineは相間移動触媒であり、溶解性の低い亜硝酸ナトリウム(NaNO2)の活用を可能としています。

以下の様な化合物は、普通のニトロ化で作ること自体がほぼ無理そうですが、この触媒系ではダイレクトに合成可能。

novel_fgconversion_crosscp_2.gif

・・・・などなど。

 

この領域を発展せしめたブレイクスルーは、嵩高く、電子豊富な配位子の開発です。例えば上記のBuchwaldらによる報告では独自開発された嵩高いリン配位子が、また最近ではN-ヘテロ環状カルベン(NHC)を配位子として使う例が多く知られています。

40年前に発見されたものと類似の触媒設計概念は、いまだに有効機能し続けています。そして上記のごとく、不可能だった化学変換を、続々と可能にし続けています。
まったくクロスカップリング反応は、偉大な化学なのです。

 

関連書籍

関連リンク

Flexible Fluorination (C&EN)

Buchwald Research Group MIT・バックワルド研究室

The Hartwig Group UC Berkeley・ハートウィグ研究室
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」④
  2. エステルをアルデヒドに変換する新手法
  3. 生合成を模倣した有機合成
  4. おっさんマウスが小学生マウスを襲う?待ったの決め手はフェロモンに…
  5. 世界最高の活性を示すアンモニア合成触媒の開発
  6. インターネットを活用した英語の勉強法
  7. 人工DNAから医薬をつくる!
  8. 三核ホウ素触媒の創製からクリーンなアミド合成を実現

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 細胞集め増やす化合物…京大化学研発見、再生医療活用に期待
  2. ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発
  3. P-キラルホスフィンの合成 Synthesis of P-chirogenic Phosphine
  4. アレクサンダー・リッチ Alexander Rich
  5. ニセ試薬のサプライチェーン
  6. 文献管理ソフトを徹底比較!
  7. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調べてみた
  8. クリス・クミンス Christopher C. Cummins
  9. イミンを求核剤として反応させる触媒反応
  10. リチャード・ラーナー Richard Lerner

関連商品

注目情報

注目情報

最新記事

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~

日華化学(本社福井県福井市、江守康昌社長)は、髪へのダメージや頭皮への刺激がなく、アレルギーのリスク…

スナップタグ SNAP-tag

スナップタグ(SNAP-tag)は、特定のタンパク質だけを化学標識したいときに、目印として融合発現さ…

フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(リベラリス)

シリカゲルクロマトグラフィーを機械にやっていただき時間や場所、溶媒などを削減できるフラッシュ自動精製…

“結び目”をストッパーに使ったロタキサンの形成

分子ノットの嵩高さを利用した新規ロタキサンを合成した。末端に分子ノットをストッパーとして形成すること…

Chem-Station Twitter

PAGE TOP