[スポンサーリンク]

一般的な話題

分子の磁石 “化学コンパス” ~渡り鳥の磁場観測メカニズム解明にむけて~

[スポンサーリンク]

渡り鳥を含む多くの動物は方位を正確に把握する手段のひとつとして”地球の磁場”を知覚していると言われています。

生物物理学的メカニズムは未だ十分に理解されていないものの、長年の動物学者や化学者、物理学者らの活発な研究により、そのメカニズムが少しずつ明らかとなってきております。今回はこの磁気感受における複雑な生体内の現象を、モデル分子を用いて理解を深めている研究の一端について触れてみたいと思います。

鳥類の磁気感受メカニズムの仮説

鳥類が磁気を感じるための機構についていくつか仮説がありますが、網膜に存在する青色光受容体クリプトクロムと呼ばれるたんぱく質の一種であるフラビンアデニンジヌクレオチド (FAD) が磁気受容に関わる事が報告されて[1,2]以来、過去1978年にSchulten, K. らによって提案された光電子移動反応により生成される磁気的に敏感なフリーラジカルに基づく仮説、いわゆるラジカルペア機構 (Radical Pair Mechanism; RPM)[3] が動物の磁気感受のメカニズムにおいて特に注目を集めています。

Fig. 1. RPMにおける鳥の目の磁気受容の識別様式の概略図. (出典: [4]一部改編 詳細はこちら参照)

“RPM” 以外の説に、”マグネタイト”と呼ばれる体内に存在する極めて小さな磁石粒子を方位磁針とする仮説もあり[5]、現在、RPMとともにこの二説が動物の磁気受容の議論における有力仮説となっています。

ラジカルペア機構の検証課題

RPMに関わるタンパク質はFADの青色光励起により生成される空間的の離れたFADと対ラジカルのペアとされています。[6] このRPMの現象理解において、特に地球の磁場 (ca. 30-65 μT) と同じくらい弱い磁場下での反応を分光観測することが重要されていますが、in vitro での磁場効果は、単離された無傷のタンパク質に対し地球の約20倍の磁界でのみ観察されており、低磁場下の実験的証拠を提供している研究はほとんどありません。

DNAベースの磁気センサーの提案は、注目に値するものの、生成されるラジカルペアの寿命の短さや、ラジカルパートナー間の距離の近さなど、重要な問題があり、どちらも(低)電磁界に敏感なラジカルペアの検証において適しておりません。

Fig.2. FADの光励起サイクルと分子状酸素ラジカルを含んだ想定反応スキームの概略図.(出典: [7]

そこで光化学反応が渡り鳥の磁気センサーの基礎を形成できるという原理を確立するため、最近の研究ではモデル分子を適用するケースもあります。

CPF分子の特徴と適応例

DNA由来の磁気センサーに比べ、ハンドリング容易かつ光誘起ラジカルペアの寿命が比較的長く、地球の磁場と同じくらい弱い磁場に敏感な ”カロテノイド-ポルフィリン-フラーレン系分子 (CPF)” がモデル分子として提唱されております。[1,8,9]

Fig. 3. カロテノイド-ポルフィリン-フラーレンモデル系の分子 (CPF). (出典: [8] 一部改編)

では、このCPF分子の特徴について見ていきましょう。
一般に、磁場効果はドナーとアクセプターが溶液中で自由に拡散するラジカルペアシステムもしくは分子内におけるラジカル同士が柔軟な鎖によって結合されて大きな内部運動が容易であるラジカルペアの組み合わせで、観測が可能となるとされております。モデル分子であるCPF分子は光励起より生じる一次ドナーが分子中におけるドナー-アクセプター種を介して、最終的なアクセプターに移動する多段階電子移動を利用し、ラジカルペアを高収率で形成することができるといった特徴があります。[10,11] 加えて、本CPF分子は合成が簡便であり、有機溶媒に非常に溶けやすくハンドリング性に優れているされております。

つぎに、励起過程における状態を少し詳しく見てみましょう。
下図のように、532 nmの励起光にてまずポルフィリンが CSPF に光励起された後、すみやかに分子内電子移動が行われ、最初にピコ秒の寿命をもつ一次ラジカルペアCS[P•+F•–] が生成されます。それに続く電子移動により、おおよそ1マイクロ秒の寿命をもつ第二のラジカルペア [C•+PF•–] が形成されます。温度や溶媒などの雰囲気によりますが、第二のラジカルペアは主に一重項状態で存在しており、三重項状態で生成されるラジカルペアはわずかとされています。このとき、磁場の存在により一重項状態と三重項状態の相互変換過程が影響を受け、再結合するラジカルペアの割合が変化するとされております。[9]

Fig. 4. CPF分子のエネルギーダイアグラムと電子スピン状態. (出典: [9])

化学コンパスとしての性質

光化学的に形成されたラジカルペアの寿命が磁場によって変化することを実証し、磁気センサー、すなわち”化学コンパス”としての動作に不可欠な異方性の化学的応答性が評価されます。これまでは冒頭で述べたように多くの実験的な調査では地球の低磁場よりも数桁強い試験環境で行われているため、弱い磁場に対する感度についての知見はまだまだ研究報告が少ないとされていました。

Kerpal, C. らはこのCPF分子を用いて比較的弱い磁場条件 (50-200 μT)での化学コンパスの応答性について調査し、ついに磁気応答性を有するラジカルペアが地球レベルの低磁場領域でも機能を発現することを初めて実証したと2019年のnature communicationsにて報告しました[8]

Fig.5. 実験装置の概略図と磁場効果.(出典: [8]一部改編)

弱い磁場は主に S–T0相互変換効率を高め、より強い磁場はゼーマン効果を介してラジカルの再結合に影響を与え、一重項–三重項ミクシングを抑制させると言われてます。[8,12]

おわりに

鳥類の磁場感知メカニズムの概要と最近の研究例について見てきました。動物たちがもつ複雑な”化学コンパス”についても、CPFのようなモデル分子を駆使することで少しずつ紐解かれつつあります。検証が困難な世の中の未知に対し、分子設計とそのアプローチの仕方で取り組むことができるのが化学の醍醐味のひとつですね。

参考文献

  1. Maeda, K., et al., Nature, 2008, 453, 387. DOI: 10.1038/nature06834
  2. Ahmad, M., et al., Nature, 1993, 366, 162–166. DOI: 10.1038/366162a0
  3. Schulten, K., et al., Z. Phys. Chem., 1978, 111, 1–5. DOI: 10.1524/zpch.1978.111.1.001
  4. Gauger, EM., et al., Phys. Rev. Lett., 2011, 106, 040503. DOI: 10.1103/PhysRevLett.106.040503
  5. Beason, R C., et al., Nature, 1984, 309, 151–153. DOI: 10.1038/309151a0
  6. 前田光憲, 化学と教育, 2016, 64.
  7. Schulten. K., et al., Biophys. J., 2009, 96, 4804–4813. DOI: 10.1016/j.bpj.2009.03.048
  8. Kerpal, C., et al., Nat. Commun., 2019, 10, 1-7. DOI: 10.1038/s41467-019-11655-2
  9. Maeda, K., et al., Chem. Commun., 2011, 47, 6563–6565. DOI: 10.1039/c1cc11625h
  10. Kodis, G., et al., J. Phys. Org. Chem., 2004, 17, 724–734. DOI: 10.1002/poc.787
  11. Kuciauskas, D., et al., J. Am. Chem. Soc., 1998, 120, 10880-10886. DOI:10.1021/ja981848e
  12. Lewis, A.M., et al., J. Chem. Phys., 2018, 149, 034103. DOI: 10.1063/1.5038558

関連書籍

関連リンク

〇Forbes Japan: 科学が解明、渡り鳥たちの「驚異的方向感覚」のミステリー (https://forbesjapan.com/articles/detail/20545)

 

ちおふぇん

投稿者の記事一覧

世の中の課題に対して分子レベルでのモノづくりからの解決を夢見る有機材料屋さん。
興味の対象は構造と物性およびそのその発現メカニズム。
好きな読み物は月刊化学のシリーズ連載。

関連記事

  1. 神秘的な海の魅力的アルカロイド
  2. 地方の光る化学商社~長瀬産業殿~
  3. 高効率・高正確な人工核酸ポリメラーゼの開発
  4. 在宅となった化学者がすべきこと
  5. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝…
  6. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  7. 半導体ナノ結晶に配位した芳香族系有機化合物が可視光線で可逆的に脱…
  8. ナイトレンの求電子性を利用して中員環ラクタムを合成する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケムステバーチャルプレミアレクチャーの放送開始決定!
  2. 有機溶媒吸収し数百倍に 新素材のゲル、九大が開発
  3. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  4. 高活性な不斉求核有機触媒の創製
  5. 多彩な蛍光を発する単一分子有機化合物をつくる
  6. 第三級アミン酸化の従来型選択性を打破~Auナノ粒子触媒上での協奏的二電子一プロトン移動~
  7. 抗薬物中毒活性を有するイボガイン類の生合成
  8. Carl Boschの人生 その4
  9. 4,7-ジブロモ-2,1,3-ベンゾチアジアゾール:4,7-Dibromo-2,1,3-benzothiadiazole
  10. 可視光全域を利用できるレドックス光増感剤

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP