[スポンサーリンク]

スポットライトリサーチ

電子や分子に応答する“サンドイッチ”分子からなるナノカプセルを開発

[スポンサーリンク]

第575回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の遠山 和希 (とおやま かずき)さんにお願いしました。

吉沢・澤田研では、超分子化学を基盤に、水中で活用できる “便利なナノ道具” の開発を目指して、「芳香環空間」に関する研究を行っています。具体的には、生体システムに匹敵する「ナノ空間」を人工的に作製することで、合成化学や材料化学、物性化学、分析化学などの分野での新展開を目指しています。さらに「ペプチド空間」に関する研究も行っており、剛直な”合成パーツ”と柔軟な”生体パーツ”の両方を活用した新空間化学に挑戦しています。

本プレスリリースの研究内容は、ナノカプセルの新奇合成についてです。本研究グループでは、新たにフェロセンを持つ湾曲型の両親媒性分子を設計・合成し、水中で高密度なフェロセンの殻を持つナノカプセルの形成に初成功しました。この研究成果は、「Angewandte Chemie International Edition」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

A Redox-Responsive Ferrocene-Based Capsule Displaying Unusual Encapsulation-Induced Charge-Transfer Interactions

Kazuki Toyama, Yuya Tanaka* and Michito Yoshizawa*

Angew. Chem. Int. Ed. 202362, e202308331.

DOI:doi.org/10.1002/anie.202308331

指導教員の田中 裕也助教より遠山さんについてコメントを頂戴いたしました!

遠山和希さんの化学に対する姿勢を一言で言うと「好奇心の塊」です。経過報告会や雑誌会では、研究室に入った当初から遠山さんが質問をしない会はほとんどありません。学会においても積極的に質問し、その後に交友関係を広げるコミュニケーション力も発揮しています。今回の研究は遠山さんの修士課程をまとめた成果で、フェロセンを殻に持つカプセルに関するものです。研究開始当初に設定した合成ルートは、中間体の予期せぬ高い反応性のため変更を余儀なくされ、研究が停滞していた時期がありました。しかし、遠山さんは持ち前の仮説立案力と文献検索力で様々なアイデアを出し、最終的に目的化合物の合成を達成しました。また両親媒性分子の性質に関しても、予期していなかった新たな現象を見つけるなど粘り強く調べる探求力も遠山さんの長所の1つです。

遠山さんは今年の4月から博士課程に進学しました。今後、さらに面白い発見をしてくれるのではと期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

サンドイッチ型分子「フェロセン」の殻を持つナノカプセルの新構築法を開発しました。このカプセルにより電子受容性分子を内包することで、特異な電荷移動相互作用の誘起に成功し、酸化還元刺激により相互作用の解除を達成しました。

フェロセンは鉄イオンを有機分子で挟んだ、代表的なサンドイッチ型分子であり、高い酸化還元応答性と強い電子供与性から機能性電子材料への応用が期待されています(図1a)。フェロセンを精密に集合させることで、新たな電子機能や空間機能が期待されるものの、そのような高度に集合化した構造の合理的な構築手法は未開拓でした。

本研究では、新たにフェロセンを持つ湾曲型の両親媒性分子FAを設計・合成しました(図1b左)。この分子が水中で瞬時に自己集合することで、高密度なフェロセンの殻を持つナノカプセル(FA)nの形成に初成功しました(図1c)。さらに、酸化還元刺激により、カプセル構造の集合と分散を制御することができました(図1b右)。

図1 (a)フェロセンの構造とその性質 (b)湾曲型両親媒性分子FAによるフェロセンナノカプセル(FA)nの形成と酸化還元によるカプセルの分散と再形成 (c)ナノカプセル(FA)4の計算構造

また、このカプセルとゲスト分子を、すりつぶして混合することで、様々な平面状分子や球状分子を、水中で効率良く取り込むことできました(図2a左)。特に、代表的な電子受容性分子であるクロラニル(Chl)をゲスト分子とした場合は、8分子のFAにより2分子Chlが内包された、球状構造体(FA)8•(Chl)2を形成しました(図2b)。この内包体では、カプセルのフェロセン骨格と、Chlの近接により、内包誘起電荷移動相互作用に基づく近赤外吸収帯が発現しました(図2c)。さらに、酸化還元刺激によるカプセル構造の分散と集合の制御により、内包分子の放出と電荷移動相互作用の解除にも成功しました(図2a右、図2c)。同様の現象は、電子受容性分子のテトラシアノキノジメタンでも観測することができました。

図2 (a)ナノカプセル(FA)nによるChlの内包と放出 (b)内包体(FA)8•(Chl)2の計算構造 (c)UV-visible-NIR吸収スペクトル(r.t., H2O):内包誘起電荷移動相互作用の発現とその解除

今後は、本手法を応用して、様々な外部刺激に応答可能なナノカプセルの開発を進めるとともに、分子内包で現れる新たな現象を解き明かしていきたいと考えています。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

内包誘起電荷移動相互作用を発現させたことです。苦労してフェロセンカプセルの合成には成功しましたが、当初狙っていた現象は発現せず、このカプセルならではの性質を探索する日々が続きました。試行錯誤する中で、フェロセンの電子供与性に注目しました。フェロセンは強い電子供与性を有していますが、溶液中・非共有結合での電荷移動相互作用の発現は、我々の知る限り、未達成でした。これは恐らく、その非平面状の形状に由来して、有機π共役系分子とは異なり、分子間のスタッキング状態を取りづらいためだと考えています。本研究で合成したフェロセンカプセルは、様々なゲスト分子に対するホスト能を有していたため、電子受容性分子の内包を試みました。その結果、内包体の形成に伴い、近赤外領域に新たな吸収帯が出現しました。一方、カプセルが形成されない有機溶媒中では、この吸収帯が観測されませんでした。つまり、内包に誘起された特異な電荷相互作用を発見することができました。長波長側から順々に表示されていく吸収スペクトルを見る際はとてもワクワクし、近赤外領域に吸収帯が出現した際には非常に興奮しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

フェロセンカプセルの合成です。まず初めは、カップリング反応によるフェロセン骨格の導入がうまくいかず、様々な条件を検討し、やっとのことでフェロセン骨格の導入を達成しました。喜びも束の間、当初計画していた保護・脱保護を経由する合成ルートでは、予想外にも中間体の安定性が非常に低いことが、実験や文献調査から判明しました。そのため、最初のステップから合成ルートの変更を余儀なくされました。このような困難を、一つ一つ丹念な実験条件の検討と文献調査、そして何よりも先生方とのディスカッションによって乗り越えることができました。いずれも研究を進める上で基本的なことではありますが、困難な状況だからこそ、基本を徹底して行うことが重要であると学びました。苦労の末、狙いのフェロセンカプセルを合成できた際の達成感は格別でした

Q4. 将来は化学とどう関わっていきたいですか?

世界中の人々を魅了するような、面白い構造や機能を有する、新たな物質を創り出すことが、私の夢です。そのような研究ができるような、アカデミアで研究することを、現時点では目指しています。そのためにも、まずは目の前の研究に全力で取り組み、研究を楽しみ、研究者として大きく成長できるよう、日々精進していきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後までお読みいただき、ありがとうございました。学会や大学などで見かけた際には、気軽に声をかけていただけると幸いです。

また学部生の頃からずっと楽しく拝見していた、Chem-Stationに掲載させていただき、非常に光栄です。このような機会を設けていただいた、Chem-Stationスタッフの皆様に感謝申し上げます。

最後になりますが本研究を遂行するにあたり、ご指導賜りました吉沢道人教授、澤田知久准教授、田中裕也助教、Lorenzo Catti助教をはじめとした吉沢・澤田研究室メンバーの皆様に、この場をお借りして、心より感謝申し上げます。

研究者の略歴

名前:遠山 和希 (とおやま かずき)

所属:東京工業大学 化学生命科学研究所 吉沢・澤田研究室

研究テーマ:ミセル型カプセルによる金属錯体の特異物性発現

略歴:

2021年3月 東京理科大学 工学部 工業化学科 卒業

2023年3月 東京工業大学 物質理工学院 応用化学系 応用化学コース 修士課程修了

2023年4月~ 東京工業大学 物質理工学院 応用化学系 応用化学コース 博士課程

2023年4月~ 東京工業大学 高度人材育成博士フェローシップ

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. なんと!アルカリ金属触媒で進む直接シリル化反応
  2. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活…
  3. 「極ワイドギャップ半導体酸化ガリウムの高品質結晶成長」– カリフ…
  4. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・…
  5. NeoCube 「ネオキューブ」
  6. 第17回ケムステVシンポ『未来を拓く多彩な色素材料』を開催します…
  7. 四置換アルケンのエナンチオ選択的ヒドロホウ素化反応
  8. Angewandte Chemieの新RSSフィード

注目情報

ピックアップ記事

  1. 触媒なの? ?自殺する酵素?
  2. 水中で光を当てると水素が湧き出るフィルム
  3. シリンドロシクロファン生合成経路の解明
  4. 一流ジャーナルから学ぶ科学英語論文の書き方
  5. 2011年日本化学会各賞発表-学会賞-
  6. オペレーションはイノベーションの夢を見るか? その3+まとめ
  7. チロシン選択的タンパク質修飾反応 Tyr-Selective Protein Modification
  8. Nature主催の動画コンペ「Science in Shorts」に応募してみました
  9. 研究費総額100万円!30年後のミライをつくる若手研究者を募集します【academist】
  10. パッションフルーツに「体内時計」遅らせる働き?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP