[スポンサーリンク]

一般的な話題

進化する電子顕微鏡(TEM)

[スポンサーリンク]

“化学者は分子、原子レベルで世界を見ることが出来る人のことである”

といつかのセミナーで聞いたことがあって以来、僕はこの言葉をなかなか良い言葉だなぁと思って心に留めています。

普通の人がそのものとしてみている、“洗剤”や“料理などのプロセス”や“医薬”を分子レベルの動きとして“見る”、そんなパラダイムを胸に化学者は研究している気がします。

ただし、化学を勉強していない人が、そういった「見かた」をするのに、ちょっと勉強が必要になるのも事実です。

しかし!そんな勉強をする必要なく、分子、原子レベルで物を「見る」ことが出来るのです。そんな魔法の装置、それが「電子顕微鏡」、特に今回は近年発展の目覚しい「透過型電子顕微鏡、TEM」を紹介したいと思います。

「もの」というのはある程度小さくなると見えなくなります。そこで人はメガネをかけます。それよりも小さくなると人は顕微鏡を使います。しかし小学校で使うような一般的な顕微鏡(*1)はいくら頑張っても100ナノメートルオーダーのものしか理論的に観察することができません。光の波長の制限があるからです。

そこで光を使わない色々な顕微鏡が登場します。AFM、STM、SEM(*2)など様々な顕微鏡が提唱されていますが、ここでは透過型電子顕微鏡(Transmission Electron Microscope)、通称TEMを紹介させて頂きます。

TEM1.jpg

TEMの原理は写し絵と同じです。違いは、写し絵は光を当てて影を観察しますが、TEMでは電子ビームをあてて、その影を観察します。

電子ビームのいいところは光と比べて、波長が短く、そのぶん分解能が良くなるというところです。

つまり「光」を使うと非常に画素の荒いモザイクにしかならないものを、「電子」を使うとほぼ極限までその画素を小さくできて、結果非常に綺麗に物が移るということです。

こーゆー顕微鏡はナノテクノロジーの素材を扱う分野で日常的に使われています。

TEM2.jpg

図1:一般的な TEMの画像(ナノロッド)

 

ではどの程度の画素までみえるかというと、金属や半導体であれば、その結晶の原子配列まで綺麗にみえるのです。

但し、従来のTEMで見られる格子は、その格子を通り抜けた、電子の干渉縞として観察されるもので、直接的な電子の投影としての絵ではなく、そのため、厳密に“原子の並び”を観察することは今まで出来ませんでした。

そこでカルフォルニア州バークレーにあるのLawrence Berkeley National Laboratoryはより高解像度を求めた電子顕微鏡、その名もTransmission Electron Aberration-Corrected Microscope (TEAM) (和訳は分かりませんが、「収差補正つきTEM」みたいな感じでしょうか)に着手し2009年に従来の目標であった0.05nmの解析度を達成しました。この大きさがどれだけ凄いものかといいますと、水素の大きさの約半分でありますので、主にTEMの守備範囲である遷移金属の原子レベルの大きさは観察できるということです。

TEM3.jpg

図2:Lawrence Berkeley National LaboratoryのTEAMの画像

TEMの発展は、Resolutionだけでなく、In situなどの観測も出来るようになっており、そのどれもが素晴らしいので、機会があればまた紹介したいです。

その中で1つごく最近報告された技術を紹介します。この報告ではサンプルを傾けた写真を複数枚とることにより、そのサンプルを立体的に捉え、映像化するという技術がNatureに報告されました。

TEM4.png

図3:金ナノ粒子の3D映像( Nature 2012 doi:10.1038/nature10934より抜粋)

今まで見えなかった世界がこのように技術の発展により、どんどん「見えて」きています。個人的にはこういう技術は直接的な感覚に訴えるので、門外漢の人にも受け入れられやすくて、とってもポップで素晴らしいと思います。

先で述べた、分子原子レベルでの物の見方をするのの入り口としては最適な道具なのではないのでしょうか?

(こーゆー考え方は一度体得してしまえば、コロンブスの卵みたいなもので簡単です。そしてそーゆー見方をすれば新しいものの出来方ができて楽しいよ、みたいなのを伝えたいのがケムステ的な場で文章を書くモチベーションになったりしています。。)

これまで「見えなかった」と思っているものがみえる。これこそ、「新たな世界に光がさした」状態だし、世界の広がりではないでしょうか?しかしこの先がどこで何が見えるようになるかわかりません。いまだに「見えていない」ものが「見える」ようになる未来があるかもしれないのですよ。

(*1)光学顕微鏡を指す。

(*2)それぞれAFM:Atomic Force Microscope、STM: Scanning Tunnel、SEM: Scanning Electron Microscopeのこと。

参考

(1)The TEAM Project http://ncem.lbl.gov/TEAM-project/index.html

(2)”Electron tomography at 2.4-ångström resolution”; Jianwei Miao et al. Nature 2012 doi:10.1038/nature10934

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)
  2. 柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質へ…
  3. 透明なカニ・透明な紙:バイオナノファイバーの世界
  4. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  5. Arcutine類の全合成
  6. フロー法で医薬品を精密合成
  7. 【東日本大震災より10年】有機合成系研究室における地震対策
  8. 唾液でHIV検査が可能に!? 1 attoモル以下の超高感度抗体…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究者のためのCG作成術②(VESTA編)
  2. 白い粉の正体は…入れ歯洗浄剤
  3. 私が思う化学史上最大の成果-2
  4. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  5. 分子で作る惑星、その名もナノサターン!
  6. 環境、人体に優しい高分子合成を開発 静大と製薬会社が開発
  7. 「一置換カルベン種の単離」—カリフォルニア大学サンディエゴ校・Guy Bertrand研より
  8. ここまで進んだ次世代医薬品―ちょっと未来の薬の科学
  9. ケムステVシンポ、CSJカレントレビューとコラボします
  10. コーンフォース転位 Cornforth Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年6月
« 5月   7月 »
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

光照射による有機酸/塩基の発生法:①光酸発生剤について

糖化学ノックイン領域では、班員の専門性について相互理解を深めつつ、関連分野の先端研究を包括的に把握す…

第23回ケムステVシンポ『進化を続ける核酸化学』を開催します!

もう12月。2021年もおわりが近づいています。さて、今年最後のケムステVシンポとして第23…

KISTECおもちゃレスキュー こども救急隊・こども鑑識隊

おもちゃレスキューに君も入隊しよう!大事なおもちゃがこわれたら、どうしますか? …

ポンコツ博士研究員の海外奮闘録 〜コロナモラトリアム編〜

事実は小説より奇なり。「博士系なろう」という新ジャンルの開拓を目指し,博士を経て得られた文章力を全力…

乙卯研究所 研究員募集

公益財団法人乙卯研究所から研究員募集のお知らせです。自分自身でテーマを決めて好きな有機化学の研究…

SNSコンテスト企画『集まれ、みんなのラボのDIY!』

先日公開されたこちらのケムステ記事と動画、皆さんご覧になって頂けましたでしょうか?https…

可視光レドックス触媒と有機蓄光の融合 〜大気安定かつ高性能な有機蓄光の実現〜

第351回のスポットライトリサーチは、九州大学 安達・中野谷研究室 で研究をされていた陣内 和哉さん…

可視光全域を利用できるレドックス光増感剤

東京工業大学 理学院 化学系の玉置悠祐助教、入倉茉里大学院生および石谷治教授は、新たに合成したオスミ…

【ジーシー】新卒採用情報(2023卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

有機合成のための新触媒反応101

(さらに…)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP