[スポンサーリンク]

一般的な話題

進化する電子顕微鏡(TEM)

[スポンサーリンク]

“化学者は分子、原子レベルで世界を見ることが出来る人のことである”

といつかのセミナーで聞いたことがあって以来、僕はこの言葉をなかなか良い言葉だなぁと思って心に留めています。

普通の人がそのものとしてみている、“洗剤”や“料理などのプロセス”や“医薬”を分子レベルの動きとして“見る”、そんなパラダイムを胸に化学者は研究している気がします。

ただし、化学を勉強していない人が、そういった「見かた」をするのに、ちょっと勉強が必要になるのも事実です。

しかし!そんな勉強をする必要なく、分子、原子レベルで物を「見る」ことが出来るのです。そんな魔法の装置、それが「電子顕微鏡」、特に今回は近年発展の目覚しい「透過型電子顕微鏡、TEM」を紹介したいと思います。

「もの」というのはある程度小さくなると見えなくなります。そこで人はメガネをかけます。それよりも小さくなると人は顕微鏡を使います。しかし小学校で使うような一般的な顕微鏡(*1)はいくら頑張っても100ナノメートルオーダーのものしか理論的に観察することができません。光の波長の制限があるからです。

そこで光を使わない色々な顕微鏡が登場します。AFM、STM、SEM(*2)など様々な顕微鏡が提唱されていますが、ここでは透過型電子顕微鏡(Transmission Electron Microscope)、通称TEMを紹介させて頂きます。

TEM1.jpg

TEMの原理は写し絵と同じです。違いは、写し絵は光を当てて影を観察しますが、TEMでは電子ビームをあてて、その影を観察します。

電子ビームのいいところは光と比べて、波長が短く、そのぶん分解能が良くなるというところです。

つまり「光」を使うと非常に画素の荒いモザイクにしかならないものを、「電子」を使うとほぼ極限までその画素を小さくできて、結果非常に綺麗に物が移るということです。

こーゆー顕微鏡はナノテクノロジーの素材を扱う分野で日常的に使われています。

TEM2.jpg

図1:一般的な TEMの画像(ナノロッド)

 

ではどの程度の画素までみえるかというと、金属や半導体であれば、その結晶の原子配列まで綺麗にみえるのです。

但し、従来のTEMで見られる格子は、その格子を通り抜けた、電子の干渉縞として観察されるもので、直接的な電子の投影としての絵ではなく、そのため、厳密に“原子の並び”を観察することは今まで出来ませんでした。

そこでカルフォルニア州バークレーにあるのLawrence Berkeley National Laboratoryはより高解像度を求めた電子顕微鏡、その名もTransmission Electron Aberration-Corrected Microscope (TEAM) (和訳は分かりませんが、「収差補正つきTEM」みたいな感じでしょうか)に着手し2009年に従来の目標であった0.05nmの解析度を達成しました。この大きさがどれだけ凄いものかといいますと、水素の大きさの約半分でありますので、主にTEMの守備範囲である遷移金属の原子レベルの大きさは観察できるということです。

TEM3.jpg

図2:Lawrence Berkeley National LaboratoryのTEAMの画像

TEMの発展は、Resolutionだけでなく、In situなどの観測も出来るようになっており、そのどれもが素晴らしいので、機会があればまた紹介したいです。

その中で1つごく最近報告された技術を紹介します。この報告ではサンプルを傾けた写真を複数枚とることにより、そのサンプルを立体的に捉え、映像化するという技術がNatureに報告されました。

TEM4.png

図3:金ナノ粒子の3D映像( Nature 2012 doi:10.1038/nature10934より抜粋)

今まで見えなかった世界がこのように技術の発展により、どんどん「見えて」きています。個人的にはこういう技術は直接的な感覚に訴えるので、門外漢の人にも受け入れられやすくて、とってもポップで素晴らしいと思います。

先で述べた、分子原子レベルでの物の見方をするのの入り口としては最適な道具なのではないのでしょうか?

(こーゆー考え方は一度体得してしまえば、コロンブスの卵みたいなもので簡単です。そしてそーゆー見方をすれば新しいものの出来方ができて楽しいよ、みたいなのを伝えたいのがケムステ的な場で文章を書くモチベーションになったりしています。。)

これまで「見えなかった」と思っているものがみえる。これこそ、「新たな世界に光がさした」状態だし、世界の広がりではないでしょうか?しかしこの先がどこで何が見えるようになるかわかりません。いまだに「見えていない」ものが「見える」ようになる未来があるかもしれないのですよ。

(*1)光学顕微鏡を指す。

(*2)それぞれAFM:Atomic Force Microscope、STM: Scanning Tunnel、SEM: Scanning Electron Microscopeのこと。

参考

(1)The TEAM Project http://ncem.lbl.gov/TEAM-project/index.html

(2)”Electron tomography at 2.4-ångström resolution”; Jianwei Miao et al. Nature 2012 doi:10.1038/nature10934

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 私がケムステスタッフになったワケ(4)
  2. 今度こそ目指せ!フェロモンでリア充生活
  3. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  4. BASFとはどんな会社?-2
  5. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実…
  6. 【太陽HD】世界初!セルロースナノファイバー複合電子材料の研究
  7. アミン存在下にエステル交換を進行させる触媒
  8. ノーベル化学賞を受けた企業人たち

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. インドール一覧
  2. カルボニルトリス(トリフェニルホスフィン)ロジウム(I)ヒドリド:Carbonyltris(triphenylphosphine)rhodium(I) Hydride
  3. フレデリック・キッピング Frederic Stanley Kipping
  4. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  5. 今冬注目の有機化学書籍3本!
  6. 資生堂:育毛成分アデノシン配合の発毛促進剤
  7. 周期表を超えて~超原子の合成~
  8. 「コミュニケーションスキル推し」のパラドックス?
  9. C60MC12
  10. 近況報告PartII

関連商品

注目情報

注目情報

最新記事

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

Chem-Station Twitter

PAGE TOP