[スポンサーリンク]

ケムステニュース

昭和電工、異種材接合技術を開発

[スポンサーリンク]

昭和電工は28日、異種材料接合技術「WelQuick」を開発したと発表した。フィルムタイプの接合技術を用いてアルミや銅など金属とポリカーボネートなど樹脂といった異種材料を簡便で強固に接合できる。接合時間の大幅短縮やコスト削減、環境負荷低減に寄与することが期待される。6月からサンプル提供を開始した。 (引用:日刊産業新聞6月29日)

まずは、百聞は一見にしかずということで、昭和電工の紹介動画をご覧ください。

いろいろな種類の材料の間にこのWelQuickシートを挟み、数秒の処理で強固に接着することができるようです。さらに、可逆反応を示し熱をかけるなどの再処理を行うことで、剥がすことができ再度接着することも可能なようです。どんな材料が使われているのか知りたいところですが、固体⇔液体の相変化を利用することによって、フィルムを溶着するだけで瞬間的な接合を可能とのみ言及されており、詳細は開示されていません。

接着の様子(出典:New release

接着方法の違い(出典:New release

そもそも接着とはどのような現象なのかを簡単に見ていくと、接着の定義は接着剤を媒介とし、化学的もしくは物理的な力またはその両者によって二つの面が結合した状態とされています。身の回りには、セロハンテープ、セメダイン、両面テープ、瞬間接着剤と様々な接着できる道具がありますが、それらでは、大きく分けて1,化学的相互作用 2,機械的相互作用 3,電気的相互作用の3つの原理で接着しています。

3Mによる接着の解説、この説明では上記3つに加えて拡散相互作用も加えている

粘着物質に目を向ければ、セロハンテープには、天然ゴムやアクリルゴムが使われていますし、接着剤には、酢酸ビニル樹脂やセルロースが有機溶媒に溶解されていて、有機溶媒が揮発すると固化して接着力を示すようになっています。ホットボンドなどにはエチレン酢酸ビニルといった熱可塑性樹脂が使われており、熱で溶かして接着させます。瞬間接着剤は、空気中の水分で重合が始まりポリマー化します。2つを混合して使うタイプの接着剤も重合などの反応が始まって硬化し接着剤としての効果を発揮します。

WelQuickの動画を見る限り、下記の特徴を兼ね備えているのがこの製品の持ち味だと言えます。

  1. 一度接着後の可逆変化
  2. 素早い硬化
  3. 広い材料適合性
  4. 前処理なしで発揮

1の可逆変化についてはホットボンドも同じで熱をかければ接着を引きはがすことができますが、フィルム材料の固体と液体間の相変化を利用と謳っているので、フィルムへの外部刺激によって相変化が起きて接着/脱着が起きていると考えられます。熱接着だけでなく高周波や超音波などにもニーズに合わせてご提案ということは、組成を変えることで熱以外の外部刺激でも可逆変化できることを示唆していて、こちらもホットボンドのような一般的な接着剤とは異なる理由の一つです。2についても相変化のスピードが速いためすぐに接着されると考えられます。上記の動画で、接着には材料が良くぬれることが必要不可欠でとなっていますが、プラスチックなどの場合、表面エネルギーが低く液体との接触角大きくなりやすいため、接着されにくい特性があります。幅広い材料適合性を前処理なしで発揮するとなると、フィルムが複層になっていて外層には、表面処理の成分が含まれていて外部刺激によって溶け出して材料に表面処理を施しているかもしれません。

動画中では、PC/アルミニウム、PBT/アルミニウムでのせん断接着力が示されていますが、一般的な接着剤を目的に合わせて使用した場合の接着と比べて強力である印象です。可逆変化をしめすホットボンドとも比較していますが、100度でも接着力を示していて強力であることが示されています。

ヘンケルによる接着剤の評価方法についての解説

化学的な内容には触れられませんでしたが、この製品がいろいろな製品の製造において役立つ印象を受けました。自動車産業においては、動力関係なく車体を軽量化してエネルギー使用量を減らすことが求められていて、樹脂材料の使用が拡大しています。ただ、金属からプラスチックへの置き換えも問題があり、例えば強度の心配がない部品はプラスチック材料への置き換えができるものの接着技術が壁となり置き換えができない場合もあります。そんなとき、このような異種材料の接着に適していて接着プロセスも簡便な接着材料は役立つと考えられます。また、こちらの製品が一般向けに市販されるかは分かりませんが、アイロンやドライヤー熱で接着できればDIYで重宝すると思いました。ぜひ手に取って試してみたいものです。昭和電工では。アルミと樹脂の直接接合について紹介しており、また接着に関する特許も多く出願されています。今後の該当技術の応用と技術の更なる発展に期待します。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 「花粉のつきにくいスーツ」登場
  2. NMR が、2016年度グッドデザイン賞を受賞
  3. 世界初!うつ病が客観的に診断可能に!?
  4. 化学大手、原油高で原料多様化・ナフサ依存下げる
  5. 「株式会社未来創薬研究所」を設立
  6. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  7. AIを搭載した化学物質毒性評価サービス「Chemical Ana…
  8. 製薬各社の被災状況②

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機超伝導候補が室温超高速光応答材料に変身
  2. グリニャール反応 Grignard Reaction
  3. 藤原・守谷反応 Fujiwara-Moritani Reaction
  4. “結び目”をストッパーに使ったロタキサンの形成
  5. ケムステ版・ノーベル化学賞候補者リスト【2020年版】
  6. 三井化学、触媒科学賞の受賞者を決定
  7. iPhone7は世界最強の酸に耐性があることが判明?
  8. 未来のノーベル化学賞候補者
  9. 吉野彰氏がリチウムイオン電池技術の発明・改良で欧州発明家賞にノミネート
  10. NMRの基礎知識【測定・解析編】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP