[スポンサーリンク]

ケムステニュース

昭和電工、異種材接合技術を開発

[スポンサーリンク]

昭和電工は28日、異種材料接合技術「WelQuick」を開発したと発表した。フィルムタイプの接合技術を用いてアルミや銅など金属とポリカーボネートなど樹脂といった異種材料を簡便で強固に接合できる。接合時間の大幅短縮やコスト削減、環境負荷低減に寄与することが期待される。6月からサンプル提供を開始した。 (引用:日刊産業新聞6月29日)

まずは、百聞は一見にしかずということで、昭和電工の紹介動画をご覧ください。

いろいろな種類の材料の間にこのWelQuickシートを挟み、数秒の処理で強固に接着することができるようです。さらに、可逆反応を示し熱をかけるなどの再処理を行うことで、剥がすことができ再度接着することも可能なようです。どんな材料が使われているのか知りたいところですが、固体⇔液体の相変化を利用することによって、フィルムを溶着するだけで瞬間的な接合を可能とのみ言及されており、詳細は開示されていません。

接着の様子(出典:New release

接着方法の違い(出典:New release

そもそも接着とはどのような現象なのかを簡単に見ていくと、接着の定義は接着剤を媒介とし、化学的もしくは物理的な力またはその両者によって二つの面が結合した状態とされています。身の回りには、セロハンテープ、セメダイン、両面テープ、瞬間接着剤と様々な接着できる道具がありますが、それらでは、大きく分けて1,化学的相互作用 2,機械的相互作用 3,電気的相互作用の3つの原理で接着しています。

3Mによる接着の解説、この説明では上記3つに加えて拡散相互作用も加えている

粘着物質に目を向ければ、セロハンテープには、天然ゴムやアクリルゴムが使われていますし、接着剤には、酢酸ビニル樹脂やセルロースが有機溶媒に溶解されていて、有機溶媒が揮発すると固化して接着力を示すようになっています。ホットボンドなどにはエチレン酢酸ビニルといった熱可塑性樹脂が使われており、熱で溶かして接着させます。瞬間接着剤は、空気中の水分で重合が始まりポリマー化します。2つを混合して使うタイプの接着剤も重合などの反応が始まって硬化し接着剤としての効果を発揮します。

WelQuickの動画を見る限り、下記の特徴を兼ね備えているのがこの製品の持ち味だと言えます。

  1. 一度接着後の可逆変化
  2. 素早い硬化
  3. 広い材料適合性
  4. 前処理なしで発揮

1の可逆変化についてはホットボンドも同じで熱をかければ接着を引きはがすことができますが、フィルム材料の固体と液体間の相変化を利用と謳っているので、フィルムへの外部刺激によって相変化が起きて接着/脱着が起きていると考えられます。熱接着だけでなく高周波や超音波などにもニーズに合わせてご提案ということは、組成を変えることで熱以外の外部刺激でも可逆変化できることを示唆していて、こちらもホットボンドのような一般的な接着剤とは異なる理由の一つです。2についても相変化のスピードが速いためすぐに接着されると考えられます。上記の動画で、接着には材料が良くぬれることが必要不可欠でとなっていますが、プラスチックなどの場合、表面エネルギーが低く液体との接触角大きくなりやすいため、接着されにくい特性があります。幅広い材料適合性を前処理なしで発揮するとなると、フィルムが複層になっていて外層には、表面処理の成分が含まれていて外部刺激によって溶け出して材料に表面処理を施しているかもしれません。

動画中では、PC/アルミニウム、PBT/アルミニウムでのせん断接着力が示されていますが、一般的な接着剤を目的に合わせて使用した場合の接着と比べて強力である印象です。可逆変化をしめすホットボンドとも比較していますが、100度でも接着力を示していて強力であることが示されています。

ヘンケルによる接着剤の評価方法についての解説

化学的な内容には触れられませんでしたが、この製品がいろいろな製品の製造において役立つ印象を受けました。自動車産業においては、動力関係なく車体を軽量化してエネルギー使用量を減らすことが求められていて、樹脂材料の使用が拡大しています。ただ、金属からプラスチックへの置き換えも問題があり、例えば強度の心配がない部品はプラスチック材料への置き換えができるものの接着技術が壁となり置き換えができない場合もあります。そんなとき、このような異種材料の接着に適していて接着プロセスも簡便な接着材料は役立つと考えられます。また、こちらの製品が一般向けに市販されるかは分かりませんが、アイロンやドライヤー熱で接着できればDIYで重宝すると思いました。ぜひ手に取って試してみたいものです。昭和電工では。アルミと樹脂の直接接合について紹介しており、また接着に関する特許も多く出願されています。今後の該当技術の応用と技術の更なる発展に期待します。

関連書籍

[amazonjs asin=”4621303260″ locale=”JP” title=”接着工学 異種材料接着・接合,強度・信頼性・耐久性向上と寿命予測法”] [amazonjs asin=”4526073644″ locale=”JP” title=”自動車軽量化のための接着接合入門”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 半導体で水から水素 クリーンエネルギーに利用
  2. オカモトが過去最高益を記録
  3. 「花粉のつきにくいスーツ」登場
  4. 富士通、化合物分子設計統合支援ソフト「キャッシュ」新バージョンを…
  5. H・ブラウン氏死去/米のノーベル化学賞受賞者
  6. 化学・バイオつくば財団賞:2研究が受賞 /茨城
  7. 武田薬品、高血圧治療剤が米で心不全の効能追加
  8. 塩野義 抗インフルエンザ薬製造・販売の承認を取得

注目情報

ピックアップ記事

  1. スクショの友 Snagit
  2. 不斉反応ーChemical Times特集より
  3. パラジウムが要らない鈴木カップリング反応!?
  4. エノールエーテルからα-三級ジアルキルエーテルをつくる
  5. 化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応
  6. 分子振動と協奏する超高速励起子分裂現象の解明
  7. 周期表の形はこれでいいのか? –その 2: s ブロックの位置 編–
  8. 抗体-薬物複合体 Antibody-Drug Conjugate
  9. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  10. 塩素 Chlorine 漂白・殺菌剤や塩ビの成分

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP