[スポンサーリンク]

化学者のつぶやき

ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発

[スポンサーリンク]

2015年、九州大学・友岡克彦および井川和宜らは、ヘテロ原子を組み込んだ中員環シクロアルキンの簡便合成法を開発した。その高い反応性と構造的特性、官能基密集基質における環化付加への応用性を実証している。この高歪み化合物合成の鍵を担うのはアルキン-コバルト錯体を用いるダブルNicholas反応である。

“Heteroatom-embedded Medium-Sized Cycloalkynes: Concise Synthesis, Structural Analysis, and Reactions”

Ni, R.; Mitsuda, N.; Kashiwagi, T.; Igawa, K.*; Tomooka, K.* Angew. Chem. Int. Ed. 2015, 54, 1190.  DOI: 10.1002/anie.201409910

問題設定と解決した点

 中員環シクロアルキンは大きな歪みを持っており、本来直線状であるはずの三重結合は屈曲した構造をとっている。特に電気陰性元素が置換する化合物は歪み促進型アジド-アルキン付加環化反応(SPAAC反応)[1]などへ応用可能であり、近年ケミカルバイオロジー領域でも注目を集めている。しかしながら化合物自体の不安定性や、合成工程の煩雑さなどの問題から実用面で改善の余地を残していた。

 今回著者らはヘテロ原子(X,Y = O, N, S)を組み込んだ中員環シクロアルキンの簡便合成法を開発した。これらヘテロ原子は官能基導入部位、電気陰性部位として捉えることができる。合成品は安定性にも優れ、付加環化に対してもtunableな活性を示すため、新たな化学ツールとしての活用が期待できる。

技術や手法のキモ

 エントロピー的に不利な歪シクロアルキンを合成するため、ダブルNicholas反応[2]が選択された(冒頭図)。アルキンをジコバルトカルボニル錯体とすることで構造を折り曲げることができ、中員環化に適した配座に規定できる。またコバルトd電子の関与により、活性の低いアルコールなどを脱離基とするSN1反応に供することができる。

主張の有効性検証

①合成条件の最適化

 同様の戦略で中員環シクロアルキン合成へとアプローチした先行例はあるものの、オリゴマー生成などに起因する収率の低さに苦しめられていた。求核剤としてNTs含有基質を用いることで、2工程にて望むシクロアルキンが高収率で得られることが分かった。

 コバルト脱錯に関してはアルキン自体の高反応性が問題となっていた。著者らはCAN/シリカゲルの条件を見いだし、効率的な脱錯を行なえるようにした(冒頭図)。コバルト残渣はshort padアミノシリカで簡便に除去できることも分かった。

②基質一般性

 片方がスルホンアミドであることが求められるが、バリエーション高く歪シクロアルキンが合成可能である。

③構造特性と物性の評価

 優れた熱安定性を誇り、1cは80℃で長時間加熱しても壊れない。

 いくつかはX線結晶構造解析によりその折れ曲がり構造が明らかにされている。おおむねC-Y結合長と歪み角の大きさ(=大きいほど歪みが少ない)が正の相関を示す。これはσ*C-YとπC≡Cの相互作用に起因するものと考察される。計算化学(NBO解析)からもこれは支持される。

冒頭論文より引用

 

④付加環化に対する反応性の評価

 SPAAC反応をベンチマークに速度解析を行なうと、既報のシクロアルキンと比べても良好もしくは遜色ない結果を与えることが分かった。アルキンの歪み角の大きさと反応性は正の相関を示す事実が知られている[3]。このため、反応速度の相対関係を見積もることが出来る。結晶構造から折れ曲がり角は1m(16°) < 1c(19°) < 1n(37°) < 1l(40°)の順列となっており、実際に反応性もその順列に沿っている。イソベンゾフラン、TMSジアゾメタンを用いた[3+2]付加環化に附しても同様の傾向が見られる。

BnN3との反応速度(CD3CN中、25℃)

⑤固相合成への適用

 ケミカルバイオロジーツールへの応用を見据え、ペプチド固相合成法へと組み込み可能なFmoc保護カルボン酸担持試薬を創製した。Ns脱保護においてはチオラートアニオンを使っているが、シクロアルキン部位とは反応しない[5]。

実際に固相合成法で官能基密集化合物に組み込まれた歪シクロアルキンを合成し、SPAAC反応に附したところ、室温で反応が進行することも確認されている。

議論すべき点

  • 試薬は関東化学よりDACNの名称で市販されている。
  • 歪んだ環構造へとアプローチ出来る優れた合成法だが、それでも8員環(シクロオクチン)は事例が少なく、ハードルが大きいようである。
  • 現状知られる中でSPAAC反応速度が最も大きい歪アルキンはBARAC[5]である。これに匹敵する反応効率を目指すには、どのような構造チューニングをすれば良いだろうか?本研究は合成工程数の短さに強みがあるので、それをなるべく毀損しないアプローチが求められるだろう。

次に読むべき論文は?

  • 著者らは中員環アルケンのキラリティについて長年におよぶ基礎研究を行なっている。本研究は過去の知見をアルキンに拡張しつつ[6]も、現代的文脈に乗せて価値付けを行っている、模範的な展開例である。

参考文献

  1. Pioneering work: Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046. DOI: 10.1021/ja044996f
  2. Review: (a) Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207. DOI: 10.1021/ar00138a001 (b) Teobald, B. J. Tetrahedron 2002, 58, 4133. doi:10.1016/S0040-4020(02)00315-0 (c) Green, J. R. Synlett 2012, 1271. DOI: 10.1055/s-0031-1290486
  3. Ess, D. H.; Jones, G. O.; Houk, K. N. Org. Lett. 2008, 10, 1633. DOI: 10.1021/ol8003657 (b) Schoenebeck, F.; Ess, D. H.; Jones, G. O.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 8121. DOI: 10.1021/ja9003624
  4. シクロノニンはシステイン側鎖と反応してしまうなど、適用制限が知られている:van Geel, R.; Pruijin, G. J. M.; van Delft, F. L.; Boelens, W. C. Bioconjugate Chem. 2012, 23, 392. DOI: 10.1021/bc200365k
  5. Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010, 132, 3688. DOI: 10.1021/ja100014q
  6. Their research about cycloalkynes: (a) Igawa, K.; Kawabata, T.; Ni, R.; Tomooka, K. Chem. Lett. 2013, 42, 1374. doi:10.1246/cl.130735 (b) Igawa, K.; Kawabata, T.; Uehara, K.; Tomooka, K. Heterocycles 2015, 90, 901. DOI: 10.3987/COM-14-S(K)109
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高い発光性を示すヘリセンの迅速的合成
  2. 「夢・化学-21」 夏休み子ども化学実験ショー
  3. 多置換ケトンエノラートを立体選択的につくる
  4. 脳を透明化する手法をまとめてみた
  5. 忍者はお茶から毒をつくったのか
  6. その置換基、パラジウムと交換しませんか?
  7. ビニル位炭素-水素結合への形式的分子内カルベン挿入
  8. 徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料…

注目情報

ピックアップ記事

  1. 血液型をChemistryしてみよう!
  2. 位置多様性・脱水素型クロスカップリング
  3. 超難関天然物 Palau’amine・ついに陥落
  4. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術
  5. 単純なアリルアミンから複雑なアリルアミンをつくる
  6. 二光子吸収 two photon absorption
  7. ウルマンカップリング Ullmann Coupling
  8. 野依さん講演を高速無線LAN中継、神鋼が実験
  9. ルイスペア形成を利用した電気化学発光の増強
  10. 薬学部ってどんなところ?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP