[スポンサーリンク]

ケムステニュース

旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売

[スポンサーリンク]

 旭化成ケミカルズ(本社:東京都千代田区 社長:藤原 健嗣)の100%出資子会社である旭化成ファインケム株式会社(本社:大阪市西淀川区 社長:森山 直樹)は、医薬品の副作用抑制等に効果のある光学活性体の開発・製造用不斉酸化触媒に用いられる、新規キラルリガンド(触媒配位子)「キラルビスヒドロキサム酸リガンド『CBHA』」の工業化技術を世界で初めて確立し、7月9日(月)から試薬販売しますのでお知らせします。
「CBHA」は、医薬品開発・製造時に従来の不斉酸化用リガンドでは、使えなかったり、低い光学純度しか得られなかった領域に用いることで、高い光学純度が得られます。また、酸化反応を行う際の安全性の大幅な改善、製造プロセスの簡略化も期待されます。
当社は、試薬の販売を開始するとともに、さらに本技術を用いて光学活性医薬中間体の製造受託も行ってまいります(引用:日経プレスリリース)。

 

このCBHAはシカゴ大学山本尚教授らによるもので、不斉触媒酸化反応用の配位子です。不斉触媒酸化反応、特に、二重結合を光学活性なエポキシドに変換する反応(図参照)といえば、野依教授らとともに2001年のノーベル化学賞を受賞した、K.B. Sharpless教授が開発したSharpless-香月エポキシ化反応が有名です。

 

 ただし、実はこの反応、アリルアルコール(図参照)でないと、反応が進まないだけでなく高い光学純度のエポキシドが得られないのです。もちろん反応基質にもよりますが、E-アリルアルコールに関してはほぼ完璧な光学純度で目的物が得られますが、Z-アリルアルコールやホモアリルアルコール(アリルアルコールよりももうひとつ炭素が離れた反応)においてはかなりエナンチオ選択性(右手と左手の関係の化合物のどちらを選ぶかという選択性)が下がってしまいます(詳しいことはここでは述べません)。さらに、この反応水分をかなり嫌い、さらに温度管理もしっかりしなくてはいけません。いくらノーベル化学賞を受賞した触媒といってもオールマイティではないのです。

 

そのため不斉エポキシ化反応はいまだに多くの研究者によって研究がなされています。

 

山本教授もその一人で、数年前よりビスヒドロキサム酸リガンドを用いた不斉酸化反応を研究していました。非常によい結果であったものの、やはり多くはアリルアルコールを用いる点やエナンチオ選択性が若干低いなどの理由でシャープレス教授のものに若干劣っていました。

 

今回、不斉酸化反応において、新規なビスヒドロキサム酸リガンドと、バナジウム錯体により調製された不斉触媒を用いると、ホモアリルアルコールはもとより、Z-アリルアルコールにおいても高いエナンチオ選択性を実現することに成功し、さらに完全な禁水条件、高度な温度管理を必要とせず、目的の光学活性なエポキシドを合成することに成功しました[1]

 

今回の改良点は図のRの部位に今までよりもさらにかさ高い官能基を導入したこと。なぜこれまで試みなかったのかということは若干不思議ですが、それによって、汎用性の高い不斉触媒を開発することができ、工業化に成功したというわけです。また、使われているバナジウム錯体も一見変わっており、通常エポキシ化ではVO(acac)2錯体が有名ですが、この反応ではVO(OiPr)3錯体が使われています。空気に若干不安定ですが、acac錯体よりも反応性が高く、私も使ったことがありましたが、このおかげで鍵反応がブレイクスルーしました。

話はずれましたが、山本教授、シカゴに行っても本当に活躍しておりますね。すばらしい結果だと思います。

 

関連文献

[1] “Vanadium-Catalyzed Asymmetric Epoxidation of Homoallylic Alcohols”

Zhang, W.; Yamamoto, H. J. Am. Chem. Soc.2007,129, 286. DOI:10.1021/ja067495y

ja067495yn00001.gif

New chiral bishydroxamic acids were synthesized and tested as chiral ligands in the vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols to provide good yields and high enantioselectivities.

外部リンク

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 木材を簡便に透明化させる技術が開発される
  2. 兵庫で3人が農薬中毒 中国産ギョーザ食べる
  3. 2012年の被引用特許件数トップ3は富士フイルム、三菱化学、積水…
  4. 植物改良の薬開発 金大・染井教授 根を伸ばす薬剤や、落果防止のも…
  5. MIT、空気中から低濃度の二酸化炭素を除去できる新手法を開発
  6. 国際化学五輪、日本代表に新高校3年生4人決定/化学グランプリ20…
  7. 中山商事のWebサイトがリニューアル ~キャラクターが光る科学の…
  8. 染色なしで細胞を観察 阪大ベンチャーが新顕微鏡開発

注目情報

ピックアップ記事

  1. 石油化学大手5社、今期の営業利益が過去最高に
  2. 1,2-還元と1,4-還元
  3. アセチレン、常温で圧縮成功
  4. Arcutine類の全合成
  5. トリメチルアルミニウム trimethylalminum
  6. ウクライナ危機と創薬ビルディングブロック –エナミン社のケースより–
  7. いつも研究室で何をしているの?【一問一答】
  8. サリドマイドの治験、22医療機関で 製薬会社が発表
  9. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  10. 【速報】2017年のノーベル生理学・医学賞は「概日リズムを制御する分子メカニズムの発見」に!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP