[スポンサーリンク]

ケムステニュース

鉄鋼のように強いポリプロピレン

[スポンサーリンク]

一般的なプラスチックであるポリプロピレンを用いた鉄鋼のように強いプラスチック」が広島大学の研究チームから発表されたのでご紹介します。
(毎日新聞・中国新聞で報道されていました)(写真は中国新聞より)

ポリプロピレンは、樹脂生産量の20%程度を占め、ポリエチレンとともに最も一般的に利用されているプラスチックの一つです。身近なところでは、プラスチック容器などとして利用されています。


高分子は、その分子鎖が長いために完全な結晶化は起こらず、結晶部分と非晶部分が共存した構造をとります。
(結晶化しない・しにくい高分子もあります)
この非晶部分が高分子材料の強度を下げる原因となるため、高分子の結晶化度を高める研究が行われています。機能繊維として知られるアラミド繊維は、結晶化度を高めることで高い強度を獲得しています。

今回、広島大学の彦坂特任教授のグループは、リプロピレン融液を押し潰しながらその90%以上を結晶化させることでポリプロピレンの強度を飛躍的に向上させました。

押しつぶすだけとシンプルですが、ポリプロピレン融液や押しつぶし速度に高機能化の秘密があります。
まず、ポリポロピレン融液を過冷却状態にして結晶化が開始しやすくなるようにしておきます。続いて、細長い溝の中で、1秒間に数百倍伸長する程の速さでこのポリプロピレン融液を押しつぶし、高分子の分子鎖を左右に伸ばしながら結晶化させます。この操作でポリプロピレンのフィルムが得られます。

polypro2.jpg
図1. 過冷却ポリプロピレンからの結晶生成の様子 [1]
 

この時、一列に並んだ20~30ナノメートルの結晶がミリ秒(1000分の1秒)のスケールで形成されます。下の図2のように1本の高分子鎖が100個近くの結晶を貫通しているそうです。ナノサイズの結晶同士を共有結合を有する高分子が結び付けているため、全体の強度が向上します。炭素間共有結合の結合エネルギー約350kJ/mol (25℃)の、その強さが実感できます。

polypro3.jpg
図2. ナノ結晶中の高分子鎖 [1]
 

押しつぶす操作を加えるだけで重量当たりの引張破断強度が鉄鋼の2~5倍、アルミニウムの6倍に、耐熱性(熱変形量が3%以上となる温度)が従来品よりも50℃以上高い180℃近くにまで上昇したそうです。トップ写真にあるように高い透明性も獲得しています。

この研究の興味深いところは、
1. 材料は安い汎用プラスチックであるポリプロピレン
2. エンジニアリングプラスチック並みの強度・耐熱性
3. 押しつぶすだけで機能向上
と、大規模な工場でなくとも実現可能な技術で高機能ポリプロピレンを作成できることでしょう。

不安なところは、
1. フィルムの軸方向の引っ張りに強くとも、垂直方向の引っ張りにどこまでの強度を示すのか
2. 実際の高分子材料ように、添加剤を加えた場合でも同様に強度の向上が発現するのか
といったところでしょうか。また、熱に強いといってもやはりプラスチックなので、車のエンジン部などのかなりの高温になるところには使えません。ポリプロピレンの紫外線による劣化は、紫外線吸収剤の添加・塗布である程度防止可能かと思います。

1940年、「蜘蛛の糸よりも細く、鋼鉄よりも強い」とのキャッチコピーとともにナイロンが売り出されました。
それから70年。ついにポリプロピレンも鋼鉄に近づいたようです。

 

参考文献

[1] 科学技術振興機構プレスリリース http://www.jst.go.jp/pr/announce/20100419-2/index.html

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 第32回生体分子科学討論会 
  2. 平成をケムステニュースで振り返る
  3. 塩野義製薬/米クレストール訴訟、控訴審でも勝訴
  4. 三菱化学の4‐6月期営業利益は前年比+16.1%
  5. 眼精疲労、糖尿病の合併症に効くブルーベリー
  6. トレハロースが癒着防止 手術に有効、東大など発表
  7. 170年前のワインの味を化学する
  8. 千葉大など「シナモンマスク」を商品化 インフル予防効果に期待

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 食品アクリルアミド低減を 国連専門委「有害の恐れ」
  2. 有機金属反応剤ハンドブック―3Liから83Biまで
  3. やせ薬「塩酸フェンフルラミン」サヨウナラ
  4. オーストラリア国境警備で大活躍の”あの”機器
  5. 熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性
  6. 有機反応機構の書き方
  7. ボリレン
  8. AIが作った香水、ブラジルで発売
  9. ピーター・リードレイ Peter Leadlay
  10. トリメチルロック trimethyl lock

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP