[スポンサーリンク]

スポットライトリサーチ

き裂を高速で修復する自己治癒材料

第139回目のスポットライトリサーチは、物質・材料研究機構(NIMS) 構造材料研究拠点 長田 俊郎主任研究員にお願いしました。

長田先生の研究グループでは、マルチスケールでの組織・強度設計による次世代耐熱材料の創生を一大テーマとして研究が行われています。さらに、自己治癒可能な丈夫な物質の創生についての研究も積極的に行われています。今回ご紹介する内容は、自己治癒出来るセラミックス材料の創出です。研究成果がプレスリリースとして取り上げられていましたので、インタビューさせていただきました。論文は以下のリンクから読むことが出来ます。

A Novel design approach for self-crack-healing structural ceramics with 3D networks of healing activator

T. Osada, K. Kamoda, M. Mitome, T. Hara, T. Abe, Y. Tamagawa, W. Nakao, T. Ohmura

Scientific Reports 2017, 7, 17853. DOI: 10.1038/s41598-017-17942-6

それではご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?

高速でき裂を治癒できる新たな構造用セラミックスの開発に成功しました。軽くて耐熱性に優れた自己治癒セラミックスは、航空機エンジン用タービン材料として長年注目されてきました。本研究では、未解明だった自己治癒機構の解明を通して、治癒活性相3Dネットワークという新たな設計概念を提案しました。これにより、航空機エンジンタービンの稼働温度の一つである1000℃という温度域で、従来比6万倍の速度であるわずか1分で、き裂治癒できるようになりました。耐熱材料の使用環境は高温です。また、飛行機のフライト時間は国内線ではわずか数時間です。この様な材料の”生きる環境”において、損傷を高速で治癒するために必要な指針を構築できたことは、脆性材料であるセラミックスの用途拡大に大いに貢献できると期待しています。

図 骨の治癒をヒントに開発した新規自己治癒セラミックス(a)緻密骨中の骨細胞とそのネットワーク構造の模式図(b)き裂進展経路に配置した治癒活性相(MnO)の3Dネットワークと治癒前後のき裂の様子(c)航空機タービン中の燃焼ガスを模擬した市販ガスライターで治癒する様子。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

物質科学(Material Science)と工学(Engineering)を融合し、物質・材料研究の新たな可能性を示したい!という思いで長い地道な実験をしてきました。このため、骨の治癒から着想するという基礎科学的な側面と、航空機エンジン部材としての可能性を見出すという工学的な側面を常に意識しながら、様々な工夫をしてきました。その一つが、当時は誰も成功していなかったナノ・ミクロレベルの構造解析による自己治癒機構の解明です。最終的に、一般論文誌の中に、骨の模式図と航空機エンジンの模式図を同時に示せたことが、Material Science & Engineeringに携わる若手研究者として最も思い入れのある成果となりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

仮説の証明と特許出願です。まず、人工材料である自己治癒セラミックスにも、骨の治癒における炎症・修復・改変期のような、3つの素過程が存在するという仮説を証明することが最も難しい取り組みでした。それには治癒物質のナノレベルの構造解析と熱力学平衡計算の連携が不可欠でした。幸いにも、それぞれの分野で世界第一線で活躍するNIMSの先輩研究者たちが、力を貸してくれました。特に、治癒活性相3Dネットワークが高速化に寄与していることは、NIMSにある当時世界最高の検出効率を誇ったSTEM-EDS装置が無ければ証明できませんでした。もう一つ、NIMS研究者として重要なことに特許出願があります。論文を出す前に、国内・国際特許の出願を何年も待つことは、非常に苦しい忍耐のいることでした。共著者の学生・諸先輩方が、一緒に耐えてくれたことで、何とか乗り越えることができました。

Q4. 将来は化学とどう関わっていきたいですか?

構造材料において、例えば高温酸化のような化学反応は材料の劣化そのものです。一方で、我々の体の主要な力学構造材料である緻密骨は、骨折後様々な物質を動員し、複数の化学反応を適切な時期と場所に誘発することで損傷を治癒し、100年以上の寿命を持ちます。これは、”室温・大気中で生きる”ために進化した結果であり、自然界の知恵と言えるでしょう。自然から学び、化学反応をうまく活用することで”損傷と共に生きる”人工材料の開発に微力ながら貢献できたらと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

自己治癒材料という言葉は、一昔前はSFの世界だけの言葉でした。しかし、現在では学問として確立しつつあります。若い読者の皆さん、特に中学・高校生の皆さんにもし興味を持っていただけたのなら、将来、自己治癒材料の開発に力を貸してくれたら幸いです。物質・材料研究の発展には私よりもずっと若い人たちの柔軟な発想が最も重要です。現場で楽しみにして待っています!

関連リンク

プレスリリース(横浜国立大学・NIMS)

長田先生のプロフィール(NIMS)

研究者の略歴

長田 俊郎(おさだ としお)

所属:物質・材料研究機構(NIMS) 構造材料研究拠点 主任研究員

研究テーマ:自己治癒材料、Ni-Co基超合金、航空機タービン用耐熱材料

経歴

2007年   日本学術振興会特別研究員(DC2)

2009年   横浜国立大学 大学院博士課程後期修了 博士(工学)取得

2009年   物質・材料研究機構 NIMSポスドク研究員

2012年   横浜国立大学 特任教員(研究教員)

2013年   物質・材料研究機構 研究員を経て現職に至る。

2016年   日本学術振興会海外特別研究員(デルフト工科大学 客員研究員)

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. タミフルをどう作る?~インフルエンザ治療薬の合成~
  2. メソポーラスシリカ(3)
  3. 生理活性物質? 生物活性物質?
  4. シャンパンの泡、脱気の泡
  5. 第27回 国際複素環化学会議 (27th ISHC)
  6. 力をかけると塩酸が放出される高分子材料
  7. (+)-フロンドシンBの超短工程合成
  8. 私がなぜケムステスタッフになったのか?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 中国へ講演旅行へいってきました①
  2. Dead Endを回避せよ!「全合成・極限からの一手」⑦
  3. ネオン Neon -街を彩るネオンサイン
  4. ゲルマニウム触媒でアルキンからベンゼンをつくる
  5. サーバーを移転しました
  6. 除虫菊に含まれる生理活性成分の生合成酵素を単離
  7. 新元素、2度目の合成成功―理研が命名権獲得
  8. TEMPO酸化 TEMPO Oxidation
  9. トリフルオロ酢酸パラジウム(II) : Trifluoroacetic Acid Palladium(II) Salt
  10. ピナコール転位 Pinacol Rearrangement

関連商品

注目情報

注目情報

最新記事

カクテルにインスパイアされた男性向け避妊法が開発される

男性の避妊法はXXドームを付ける一時的なものか、パイプカットを行って完全に生殖行為を不可能にするかと…

水素社会実現に向けた連続フロー合成法を新開発

第179回のスポットライトリサーチは、東京大学理学系研究科化学専攻有機合成化学教室の宮村浩之先生にお…

【大阪開催2月26日】 「化学系学生のための企業研究セミナー」

2020年卒業予定の学生の皆さんは、3月から就活本番を迎えますが、すでに企業の選考がスタートしている…

Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!

本年、Nature 創刊150周年を迎えるそうです。150年といえば、明治時代が始まったばかり、北海…

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

Chem-Station Twitter

PAGE TOP