[スポンサーリンク]

ケムステニュース

窒化ガリウムの低コスト結晶製造装置を開発

[スポンサーリンク]

科学技術振興機構(JST)は2019年11月15日、東京農工大学と大陽日酸と共同で進める産学共同実用化開発事業の開発課題「トリハライド気相成長法(THVPE法)による高品質バルクGaN成長用装置」の開発結果を成功と認定したと発表した。(JSTプレスリリース11月15日)

青色発光ダイオードは高品質なGaNの単結晶が必要不可欠で、それを製膜するプロセスを開発したことで赤﨑教授、天野教授、中村教授はノーベル化学賞を受賞しました。GaNにはもう一つの注目されている応用があり、それは電力をコントロールするパワーデバイスです。ノートPCを充電する時、ACアダプターを介してコンセントに接続していますが、ACアダプターの内部ではコンセントの交流からPC機器で使われる直流に変換しています。これを行っているのがパワーデバイスで、このほかにも直流から交流への変換交流の周波数変更、直流の電圧変更などを行う役割があります。この電力を変換することは電化製品やハイブリッド車、太陽光発電システム、電車など様々な所で使われています。従来のパワーデバイスには、他の半導体と同様にシリコンが使われていましたが、より高性能なパワーデバイスを開発するためにGaNをはじめとする新しい材料が研究されています。

トヨタ・プリウスの動力系システム、右上の箱がパワーコントロールユニットでバッテリーとモーターの間で電気をコントロールしている。

GaNは、パワーデバイスとして高速スイッチ動作や高耐圧大電流動作の点でシリコンよりも優れていますが、パワーデバイスに適した結晶基板を作ることが難しいことが課題となっています。シリコンの場合は、多結晶シリコンを溶かして単結晶のインゴットを作りスライスしてある程度の大きさの基板を一度にたくさん作ることができますが、GaNの場合には同様の方法では作れないため、異なる種類の基板の上に製膜し、それを一枚一枚はがす方法が主流となっています。厚く結晶を成長させて複数枚作ろうとすると品質が悪くなるため、現状よりも高効率で生産することは困難でした。そこで、GaNの結晶の品質を保ったまま膜厚を厚くできる技術の開発に成功したことが本研究のプレスリリースの内容です。

従来の方法では、液体のガリウムと塩酸を反応させてGaClを作り、そこにアンモニアを作用させてGaNを成膜していました(従来技術ハイドライド気相成長法HVPE)。

本研究では、液体のガリウムに塩素を反応させてGaCl3を作り、そこにアンモニアを作用させる機構を採用しました(新技術トリハライド気相成長法THVPE)。

その結果、成膜速度を大幅に向上させることに成功し、結晶の品質を示す転位欠陥も1×106毎立方センチメートル以下と従来法の5分の一になったそうです。

THVPE法(新技術)とHVPE法(従来法)の成長速度比較(引用:プレスリリース

従来の方法では膜を厚くすると反りが見られましたが、この方法では厚さ1.8mmでもフラットな結晶の基板を作ることに成功しました。この成功は、GaClとGaCl3の結晶表面での吸着の違いに起因し、GaCl3はGaへの立体障害が大きく、好ましくない吸着が高温条件下で阻害されるため高品質な結晶が生成していると考察されています。

新技術によって製膜したGaN基板(引用:プレスリリース

GaNの単結晶基板を効率的に製造する方法は、この方法以外にも研究されていて、アモノサーマル法と呼ばれるアンモニアの超臨界条件にしてGaNの結晶を析出させる方法や、高温高圧の溶融Na中でGaと窒素を反応させてGaNの結晶を成長させるフラックス法などが研究されています。各プロセスそれぞれ短所長所がありますが、本ニュースで取り上げている塩化物を経由した製造方法のほうが安全性の心配が少なく量産化の障壁が低いように感じました。

この反応方法は、東京農工大学 纐纈明伯教授のグループによって開発されました。その後、NexTEP:産学共同実用化開発事業として大陽日酸が量産化を見据えた装置の改良が進め、上記のような成果が得られたようです。産業用ガスの製造・販売の分野で大手である大陽日酸ですが、ガスだけでなくその関連するビジネスを行っています。例えば水筒で有名なTHERMOSは、大陽日酸が全額出資している会社で、液化ガスの貯蔵・運搬で重要な断熱技術を生かしたビジネスの一つです。半導体製造の分野では、材料ガスだけでなく製造装置も手掛けているため、この研究を行ったと考えられます。

大陽日酸が製造しているMOCVDによるGaN製膜装置(引用:製品情報

JSTNEDOでは様々な形の研究サポートが行われていますが、NexTEP:産学共同実用化開発事業では、大学等の研究成果に基づくシーズを用いた、企業等が行う開発リスクを伴う規模の大きい開発を支援することを目的としています。企業としてはできれば、開発すべてを自社の中で行い新技術の権利を独占して利益をすべて得ることが理想です。しかし開発に失敗した場合、かかった費用すべてを自社で賄うリスクが伴うため、せっかく有用な発見があっても事業化への開発が進められないことがあります。そこでNexTEPでは、企業に対して総額1億円以上、50億円以下の開発費の支援を行います。そして期間の終了後、評価委員会によって開発の成功・不成功が判定されます。成功と認定された場合には、10年以内の開発費の返済を求められますが、不成功と認定された場合には、開発費の10%のみを返済することになります。技術の開発は重要ですが、支援金の元は国民の税金ですから民間企業のビジネスに関わる過度な支出は認められません。企業としても、開発に失敗した場合には費用の返済を免れるためリスク回避ができます。課題のシーズの所有者には、売り上げの一部が配分されるため、新たな研究の原動力となります。現在8件の課題が終了し、すべての課題において成功の判定が下されています。企業からしてみれば技術開発の成功から先、量産化、新製品の販売と利益を出すまでの道のりは長いですが、ぜひ製品化までこぎつけてほしいと思います。

NexTEPのスキーム(引用:NexTEP:産学共同実用化開発事業

 

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. NMR が、2016年度グッドデザイン賞を受賞
  2. 塩野義製薬、抗インフル治療薬を年内に申請
  3. 子供と一緒にネットで化学実験を楽しもう!
  4. クラリベイト・アナリティクスが「引用栄誉賞2019」を発表
  5. 花粉症 花粉飛散量、過去最悪? 妙案なく、つらい春
  6. 米国もアトピー薬で警告 発がんで藤沢製品などに
  7. 三和化学と住友製薬、糖尿病食後過血糖改善剤「ミグリトール」の共同…
  8. 薬の副作用2477症例、HP公開始まる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. NICT、非揮発性分子を高真空中に分子ビームとして取り出す手法を開発
  2. エステルからエーテルをつくる脱一酸化炭素金属触媒
  3. リピトール /Lipitor (Atorvastatin)
  4. 資生堂企業資料館
  5. 研究費・奨学金の獲得とプロポーザルについて学ぼう!
  6. 武装抗体―化学者が貢献できるポイントとは?
  7. チオール架橋法による位置選択的三環性ペプチド合成
  8. アシロイン縮合 Acyloin Condensation
  9. 280億円賠償評決 米メルク社治療薬副作用で死亡 テキサス州
  10. 市川アリルシアナート転位 Ichikawa Allylcyanate Rearrangement

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その6

Tshozoです。安価で活性の高い触媒を見出した前回のつづき、早速いきます。(2)産業界との連携…

第80回―「グリーンな変換を実現する有機金属触媒」David Milstein教授

第80回の海外化学者インタビューは、デヴィッド・ミルスタイン教授です。ワイツマン化学研究所の有機化学…

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

Chem-Station Twitter

PAGE TOP