[スポンサーリンク]

化学者のつぶやき

アルケンのE/Zをわける

[スポンサーリンク]

炭素ー炭素二重結合をもつ有機分子、アルケンシリーズ!これまでアルケン合成に関する話題を、最近の研究結果とともに紹介してきました。以下、記事一覧。

今回は、アルケンを”分離する”という観点から、最新の研究結果を紹介したいと思います。

 

アルケンのシス-トランス異性体を分離する

アルケン骨格の構築法の1つとして、Julia反応[3]Wittig反応に代表されるカルボニル化合物のオレフィン化反応が挙げられます。オレフィン化で生じるシス-トランス異性体(E体およびZ体)は異なる物性をもっているため、例えばアルケンを有する医薬品では、臨床試験や医薬品製造段階で片方の異性体を高純度で得ることが望まれます。

そのため、E/Z選択的なアルケンの合成法が開発されているものの、完全に片方の異性体のみを合成できないことが多々あります。実験室レベルでE体とZ体の混合物が得られた際は、カラムクロマトグラフィー法による分離が主に行われますが、工業生産スケールには適さない分離法です。そもそもカラムクロマトグラフィーを用いてもなかなかシス-トランス異性体を分離することは困難です。一方、液液抽出による分離操作は有機合成において後処理として一般的に行われ、安価でかつ操作が簡便という利点があります。

最近、中国のHuらによってE体とZ体を液液抽出によって容易に分離できるアルケンの合成法が報告されました。

“Spontaneous Resolution of Julia-Kocienski Intermediates Facilitates Phase Separation to Produce Z- and E-Monofluoroalkenes”

Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc.2015, 137, 5199. DOI: 10.1021/jacs.5b02112

 

タイトルにあるように、残念ながら今回は一般的なアルケンでなく、モノフルオロアルケンというフッ素が置換しているアルケンです。それではモノフルオロアルケン骨格の説明に加え、如何にして異性体の分離を行ったのかみていきましょう。

 

モノフルオロアルケン骨格

ペプチドは生体内に多く含まれており、ホルモン作用や神経伝達作用など様々な生理活性を示します。すでに生体内で生理活性を示すことが知られているペプチドを医薬品に用いれば生体に対する安全性が高く、高い活性を示すことが期待されるため、近年ペプチド系医薬品の開発が盛んに進められています[1]。しかし、ペプチドは酵素に分解されやすい等の理由から生体内での半減期が短いことがしばしば問題となります。そこでペプチドの主骨格であるアミド結合を、分解されにくい等価体で代替する試みがなされています。現在、アルケン骨格やモノフルオロアルケン骨格、トリフルオロメチルアルケン骨格、メチルアルケン骨格などといった多くのペプチド等価体(peptide mimetic)が開発されています。中でも、モノフルオロアルケン骨格は二重結合性を帯びているアミド結合をアルケン骨格で置き換えているだけではなく、フッ素の電気陰性度の大きさからアミド結合の分極も良く再現しておりペプチド結合との相同性が高いことが知られています。また酵素によって分解されにくい等の特徴を有することから、有用なペプチド等価体として注目されています(図1)[2]

ペプチド等価体

図1. ペプチド等価体

 

モノフルオロアルケンのE/Z体を抽出で分離する

さて、本題に戻りましょう。

液液抽出でのモノフルオロアルケンのE/Z体の分離法に、著者らは速度論的分割(kinetic resolution)を利用しました。速度論的分割とは、数種類の化合物が生成しうる反応において、反応速度の違いを用いて単一の生成物を得る手法です。たとえば、速度論的分割を用いて光学活性な生成物を得る手法として速度論的光学分割があります。エナンチオマーSS及びSRのラセミ体に対して不斉触媒を作用させると、一方のエナンチオマーが速く反応し、他方のエナンチオマーが反応せずに残ることで光学活性な生成物PSのみを得ることができます(図2) [4]

図2. 速度論的光学分割

図2. 速度論的光学分割

今回著者らは、(E)-/(Z)-アルケン体を与える2つの水溶性ジアステレオマー中間体(IZ, IE)に対して速度論的分割を行いました。それぞれの中間体の脱離反応によるオレフィン化における反応速度の差と、中間体−生成物間の水溶性の違いを利用し、液液抽出のみでのE/Z体の分離を実現しています(図3)。

 

図3. シス−トランス異性体を液液抽出で分離する概略図

図3. シス−トランス異性体を液液抽出で分離する概略図

 

ジアステレオマー中間体の反応性の違い

著者らは、モノフルオロ化したスルホンとアルデヒドのJulia-Kocienski反応を行った際、後処理の違いによって生成物であるアルケンのE/Z選択性が異なることを見出しました。後処理に酸を用いた場合には生成物としてE/Z体の混合物が得られる反面、水を用いた場合にはE体は生成せずZ体のみが得られています(図4)。

図4. 後処理の違いによる生成物の選択性の発現

図4. 後処理の違いによる生成物の選択性の発現

 

これについて詳細に調査を行った結果、Z体またはE体を生成するジステレオマー中間体の脱離反応速度に差が生じていることが明らかとなりました(図5) 。Z体を生成する中間体(precursor A)では、脱離するスルフィノ基と2-ピリジノキシ基がアンチ配座をとり、アンチ脱離により速やかにZ体のオレフィンに変換されます。一方、E体を生成する中間体(precursor B)は置換基の立体障害のためにアンチ配座を取りにくく脱離反応が進行しにくい。そこで、E体は中間体を酸処理し2-ピリジノキシの脱離能を向上させることで得られます。

このような中間体の異なる反応性により、後処理の違いで生成物の選択性に差が生じることが分かりました。

 

図5. 脱離反応時における中間体の立体配座の違い

図5. 脱離反応時における中間体の立体配座の違い

 

抽出によるE/Z体の分離

この事実により、中間体であるスルフィン酸塩は水層に、生成物のアルケンは有機層に溶解するため、両者は液液抽出によって分けることが可能でした。すなわち、Julia-Kocienski反応によるモノフルオロアルケン骨格の構築の際、速度論的分割((E)-アルケンを与えるスルフィン酸塩中間体のみ脱離反応を進行させない)により、液液抽出のみの簡便な操作でE/Z体の分離を可能としました。実際の実験操作を図6に示します。Julia-Kocienski反応を行った後、まず水/エーテル系で分液を行います。生成した(Z)-アルケンは有機層への抽出によって得られ、E体を与えるスルフィン酸塩中間体は水層へ抽出されます。水層へ抽出されたE体の中間体は、酸処理により(E)-アルケンへと変換することが可能であり、結果的に分液操作のみで(E)-/(Z)-アルケンの分離をすることができます。

 

図6. E/Z体のモノフルオロアルケンの合成及び分離

図6. E/Z体のモノフルオロアルケンの合成及び分離

まとめ

今回著者らはE体とZ体を高純度かつ簡便に液液抽出で分離可能なモノフルオロアルケンの合成法を報告した。スルフィン酸塩の速度論的分割には特別な触媒や試薬を必要とせず、脱離段階の反応速度の違いを利用することで純度の高いE体とZ体が同時に得られます。このことから、創薬化学における化合物ライブラリの迅速構築などへの応用が期待できるでしょう。本手法の適用範囲が広がり、一般的なアルケンのE/Z体の分割が簡便にできる反応・分離法の開発が進むことを期待したいと思います。

 

参考文献

  1. http://www.jbsoc.or.jp/seika/wp-content/uploads/2013/10/82-06-08.pdf
  2. Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151. DOI: 10.1039/B701559C
  3. Zajc, B.; Kumar, R. Synthesis 2010, 11, 1822. DOI:10.1055/s-0029-1218789
  4. ハートウィグ 有機遷移金属化学(下)
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. プロペンを用いたpiericidin Aの収束的短工程合成
  2. 【追悼企画】水銀そして甘み、ガンへー合成化学、創薬化学への展開ー…
  3. 有機色素の自己集合を利用したナノ粒子の配列
  4. マテリアルズ・インフォマティクスにおけるデータ0からの初期データ…
  5. ERATO伊丹分子ナノカーボンプロジェクト始動!
  6. シュプリンガー・ネイチャーより 化学会・薬学会年会が中止になりガ…
  7. 投票!2013年ノーベル化学賞は誰の手に??
  8. 日本プロセス化学会2023ウィンターシンポジウム

注目情報

ピックアップ記事

  1. ケムステスタッフ Zoom 懇親会を開催しました【前編】
  2. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  3. 有機触媒 / Organocatalyst
  4. メンデレーエフスカヤ駅
  5. バトラコトキシン (batrachotoxin)
  6. ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~
  7. 中村 修二 Shuji Nakamura
  8. 2012年10大化学ニュース【前編】
  9. 日宝化学、マイクロリアクターでオルソ酢酸メチル量産
  10. 固有のキラリティーを生むカリックス[4]アレーン合成法の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP