[スポンサーリンク]

化学者のつぶやき

穴の空いた液体

[スポンサーリンク]

 

ゼオライト(沸石)や金属有機構造体(MOF: Metal organic frameworks)などに代表される多孔性材料は、その広大な表面積を利用した、ガス貯蔵や触媒、分子ふるいなどへの応用が世界中で研究されています。

多孔性材料は空孔を維持するのに十分な強度をもつために室温で固体であるため、現在のフロー・プロセスを基本とする工場規模での実用化が進んでいません。この問題を解決し得る、多孔性を有し、かつ、流動性のある材料として「多孔性液体」が考え出されました[1]。多孔性液体とは、その内部に空孔をもつため少ないエネルギーで物質の吸着・脱着ができ、さらに、ポンプと配管で輸送可能な流動性を併せもつような材料です(図 1)。多孔性液体は、省エネルギー化を目指した化学工場への応用や全く新しい形式の溶媒としての機能が期待できます。

2016-05-01_21-39-17

図1 多孔性液体のコンセプト

 

多孔性液体の合成戦略

連続した構造体で空孔を維持する場合は、どうしても構造が頑強になってしまい、流動性をもたせにくくなります。

一方、液体は必然的に流動してあらゆる隙間を埋めてしまうため、流動性の高い柔軟な構造では空孔を維持するのは困難です。つまり、多孔性と流動性を併せもつ多孔性液体は本質的にジレンマを抱えている。

そこで近年、英国クイーンズ大学のJames教授らは、連続した構造体の最小単位で空孔を維持できる有機分子ケージに注目しました。彼らはまず、リバプール大学のCooper教授らによって合成された、固体状態で多孔性を示すかご状イミン[2]に様々な種類のアルキル鎖を導入し、ケージ間の相互作用を減らすことで融点を下げ、室温で液状の多孔性材料の開発を行いました[3]。合成されたアルキル置換かご状イミンは50 °Cで融解するものの、アルキル鎖がケージの内部に入り込み空孔を埋まってしまうために、多孔性液体の開発には至りませんでした。

そこで最近彼らは、ループ状に閉じたクラウンエーテルを置換基に用いることで、ケージ内部への侵入を防ぎ、かつ、流動性を確保することができるのではないかと考えました[4]

2016-05-01_21-43-08

図2 多孔性液体の合成戦略

 

多孔性液体の合成と評価

先の合成戦略に基づき合成されたクラウンエーテル・ケージは、それ自身では室温で固体であり、昇温してもクラウンエーテル部分が壊れてしまい、液化させることはできませんでした。しかし、クラウンエーテル・ケージは15-クラウン-5に高濃度で溶解させることができました。クラウンエーテル・ケージのクラウンエーテル溶液は、分子動力学による計算と陽電子消滅法(補足)による測定実験の両方から空孔の存在が支持されました。メタンガスの吸着量は、純粋な15-クラウン-5の8倍であり、温度を上げても吸着量の劇的な低下は見られませんでした。

しかし、クラウンエーテル・ケージは大量合成に向かず、また粘度も高いなど、問題点がありました。そこで彼らは、クラウンエーテル・ケージの改良版としてのスクランブル・ケージを開発しました。

2016-05-01_21-48-19

図3 二つの多孔性液体

スクランブル・ケージは市販されている試薬からたったの一段階で合成可能です。また、二種類のジアミンを用いることで、構造の多様性を増やし、溶解性の向上に成功しています。スクランブル・ケージのヘキサクロロプロペン溶液において、メタンガスの1H NMR実験から空孔内部にメタンが吸着していることが確かめられられています。また、キセノンを溶かし込んだ多孔性液体にケージに入り込める大きさであるクロロホルムを添加した場合、キセノンの大幅な脱離が観測されました。一方、ケージに入り込めない大きさの1-t-ブチル-3,5-ジメチルベンゼンを添加した場合にはキセノンの脱離は観測されないなど、サイズ選択性が高いことが示されました。

 

まとめ

今回、James教授らは適切なケージ置換基のデザインと適切な溶媒の選択により、多孔性と流動性をもつ多孔性液体を開発しまいsた。固体の多孔性材料と比較すると着脱能に改善の必要はあるものの、今後のさらなる研究によって、触媒反応、抽出、気体の貯蔵や分離などへの応用が期待されます。

 

参考文献

  1. O’Reilly, N., Giri, N., James, S. L. Chem. Eur. J. 2007, 13, 3020. DOI: 10.1002/chem.200700090
  2. Cooper, A. I. and coworker, Nature Mater. 2009, 8, 973. DOI:10.1038/nmat2545
  3. James, S. L. and coworker, Chem. Sci. 2012, 3, 2153. DOI: 10.1039/C2SC01007K
  4. Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Rätzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L.;Nature 2015, 527, 216. DOI: 10.1038/nature16072

 

関連リンク

  1. Mastalerz, M “Materials chemistry: Liquefied molecular holes” Nat., 2015, 527, 174. (Nature, News & Views )
  2. 2. Cooper Group, News, “Scientists invent world’s first ‘porous liquid

 

補足

陽電子消滅法

陽電子消滅寿命測定法は、陽電子をプローブとすることで非破壊・非接触で自由体積空孔のサイズ・分布を測定することができる測定法。原理は、放射生同位体である22Naがβ崩壊するときに得られる陽電子(電子の反物質で電子と同じ質量をもつが、電荷は正である)を物質中に入射すると、電子と衝突して対消滅する。この時、消滅した質量がエネルギー(光子)として放出される。

空孔が多い物質ほど、陽子が対消滅する確率が小さいので陽電子寿命が長くなる。そのため、陽電子寿命を測定することで資料の空孔のサイズがわかる。

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. ゲルマニウムビニリデン
  2. ペロブスカイト太陽電池が直面する現実
  3. ケムステが化学コミュニケーション賞2012を受賞しました
  4. CO2が原料!?不活性アルケンのアリールカルボキシ化反応の開発
  5. ラジカルを活用した新しいケージド化法: アセチルコリン濃度の時空…
  6. わずか6工程でストリキニーネを全合成!!
  7. アステラス病態代謝研究会 2018年度助成募集
  8. 全フッ素置換シクロプロピル化試薬の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポンコツ博士の海外奮闘録XIX ~博士,日本を堪能する①~
  2. ユーコミン酸 (eucomic acid)
  3. マクマリーカップリング McMurry Coupling
  4. 使い方次第で猛毒、薬に
  5. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  6. 日本にノーベル賞が来る理由
  7. オカモトが過去最高益を記録
  8. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム
  9. カルシウムイオン濃度をモニターできるゲル状センサー
  10. ジェフ・ボーディ Jeffrey W. Bode

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年5月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP