[スポンサーリンク]

化学者のつぶやき

テルペンを酸化的に”飾り付ける”

[スポンサーリンク]

高度に酸化されたシキミセスキテルペンPseudoanisatinの全合成が報告された。原料である天然物の環拡大反応と、鉄触媒によるC–H結合の酸化的な”飾り付け”(官能基化)が本合成の鍵である。

様々な酸化様式をもつシキミセスキテルペンと合成

セスキテルペン類(Sesquiterpene)は、3つのイソプレンから構成される天然物である。その中でも、シキミから50種類ほど単離されたシキミセスキテルペン(Illicium Sesquiterpenes)は、各々ユニークな生物活性が報告されており、これはγ-Aminobutylic acid (GABA)受容体への作用の違いに起因する。seco-prezizaane骨格に様々な酸化様式をもつ化合物が報告されており(図1A)、生物活性だけでなく、構造的にも合成化学者の注目を集める化合物群である。[1,2]

シキミセスキテルペン類の合成は、seco-prezizaane骨格の構築法と酸素官能基の導入法、その2つが合成化学者の腕の見せ所と言える。

例として、(-)-jiadifenolide (4)の全合成を2つ紹介する (図1B)。Sorensenらは、ロビンソン環化反応によりシクロヘキサン環を構築し、Pd触媒を用いたC–H酸化により酸素官能基の導入を行うことで、合成容易な原料から4を18 工程で合成した。一方で、Shenviらは、同時Michel付加を利用してseco-prezizaane骨格を一挙に構築し、4を僅か8工程で合成することに成功した。

今回、カリフォルニア大学バークレー校のMaimone助教授らは、シキミセスキテルペンの生合成経路を参考にすることで、(+)-pseudoanisatin (1)の初の全合成を報告したので紹介する(図1C)。

“Oxidative Entry into the Illicium Sesquiterpenes: Enantiosecific Synthesis of (+)-Pseudoanisatin”

Hung, K.; Condakes, M.-L.; Morikawa, T.; Maimone, T.-J. J. Am. Chem. Soc. 2016, 138, 16616.

DOI: 10.1021/jacs.6b11739

彼らは、原料として5–5縮環された天然物 (+)-cedrol (10)を用い、5–6縮環構造への環拡大反応、鉄触媒を用いたC–H結合の官能基化(酸化)を鍵反応として1の合成を試みた。

図1. シキミセスキテルペンの全合成例と生合成経路(一部)

 

論文著者の紹介

研究者:Thomas J. Maimone

研究者の経歴:

-2004 B.S. University of California, Berkeley (Prof. Dirk Trauner)
2005-2009 Ph.D, The Scripps Research Institute, CA (Prof. Phil S. Baran)
2009-2012 Posdoc, MIT, Massachusetts (Prof. Steve L. Buchwald)
2012- Assistant Professor at University of California, Berkeley

研究内容:天然物の全合成

論文の概要

1を、5–5縮環構造をもち酸素官能基が少ない (+)-cedrol(10)から合成するにあたり、

  1. 5–5縮環構造から5–6縮環構造への環拡大
  2. 不活性なC(sp3)–Hの官能基化

の二つの反応が必要となる。環拡大反応は、α-ケトール転位により達成した。10から3工程で誘導した12に対して臭化銅(II)を用いることで、ケトンのα位を分子内カルボン酸により直接アシルオキシ化、続く加水分解により、α-ケトール14が中間体として生じる。14は加水分解における塩基性条件下で転位を起こし、目的の5–6縮環構造をもつ15を与えた。α-ケトール転位は、酸性・塩基性のいずれの条件でも進行するが、本反応においてはカリウムイオンの存在が必要であると述べている。

一方で、C(sp3)–H官能基化は、酸素官能基の少ない10を、”飾り付ける”にあたり、必須となる反応である。反応は15の水酸基をTBS基で保護した16の、分子内のカルボン酸部位を配向基とし、鉄触媒[3]を用いることで進行し、16のメチン水素が官能基化(酸化)されたγ-ラクトン化合物(17-19)を与えた。低収率・保護基の脱離が起きているものの、アルキルエーテルやシリルエーテル、他のC–H結合の存在下で、C(sp3)–Hの官能基化に成功したことは特筆すべき点である。

詳細は本論文を参照されたいが、この後、17および18のγ-ラクトンを開環し、エーテル部位と縮合させることで、ε-ラクトンに組み直し、最後に生じたアルケンのジヒドロキシル化反応でヒドロキシ基を2つ導入することで、(+)-pseudoanisatin (1)の全合成(12工程)に成功した。

図2. (+)-Pseudoanisatinの合成

参考文献

  1. (a) Niwa, H.; Nisiwaki, M.; Tsukada, I.; Ishigaki, T.; Ito, S.; Wakamatsu, K.; Mori, T.; Ikagawa, M.; Yamada, K. J. Am. Chem. Soc. 1990, 112, 9001. DOI: 10.1021/ja00180a067 (b) Ogura, A.; Yamada, K.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2012, 14, 1632. DOI: 10.1021/ol300390k (c) Kende, A. S.; Chen, J. J. Am. Chem. Soc. 1985, 107, 7184. DOI: 10.1021/ja00310a076
  2. (a) Siler, D. A.; Mighion, J. D.; Sorensen, E. J. Angew. Chem., Int. Ed. 2014, 53, 5332. DOI: 10.1002/anie.201402335 (b) Lu, H.-H.; Martinez, M. D.; Shenvi, R. A. Nat. Chem. 2015, 7, 604. DOI: 10.1038/nchem.2283
  3. Gomeź, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009, 48,5720. DOI: 10.1002/anie.200901865
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. デスソース
  2. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  3. 第9回慶應有機化学若手シンポジウム
  4. タミフルの新規合成法・その4
  5. 有機反応を俯瞰する ーMannich 型縮合反応
  6. オキシトシンを「見える化」するツールの開発と応用に成功-謎に包ま…
  7. ケミストリー四方山話-Part I
  8. ニコラウ祭り

注目情報

ピックアップ記事

  1. 第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授
  2. 硫黄の化学状態を高分解能で捉える計測技術を確立-リチウム硫黄電池の反応・劣化メカニズムの解明に期待-
  3. 化学コミュニケーション賞2022が発表
  4. システインから無機硫黄を取り出す酵素反応の瞬間を捉える
  5. 国連番号(UN番号)
  6. ロナルド・ブレズロウ Ronald Breslow
  7. マイヤース 不斉アルキル化 Myers Asymmetric Alkylation
  8. STAP細胞問題から見えた市民と科学者の乖離ー前編
  9. 水島 公一 Koichi Mizushima
  10. マルコフニコフ則 Markovnikov’s Rule

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP