[スポンサーリンク]

化学者のつぶやき

“かぼちゃ分子”内で分子内Diels–Alder反応

環状水溶性ホスト分子であるククルビット[7]ウリルを用いて生体内酵素Diels–Alderaseの活性を模倣することで、分子内Diels–Alder反応が進行することを見出した。

ホスト-ゲスト化学を用いた人工Diels–Alderaseの設計

ジエンとジエノフィルとのDiels–Alder(DA)反応は、立体特異的に6員環の環状骨格を構築可能であり、医薬品や天然物の合成に頻用されている。

また、生体内においてDA反応は多くの天然有機化合物の生合成経路として知られている[1]。この反応を触媒する酵素Diels–Alderaseは、基質を取り囲む水分子を遮断し基質と特異的に結合することで反応を効率的に進行させる。このようなDiels–Alderaseを模倣した人工分子システム構築にむけ、ホスト–ゲスト化学の活用が注目されている。

これまでにRebekらは自己集合性有機化合物をホスト分子触媒に用いることでDA反応が200倍加速されることを見出した(図1A)[2a]。しかし、天然のDiels–AlderaseやRebekらの報告例では、反応物と生成物との構造が類似しており、生成物がゲスト分子として振る舞うことに起因する反応の生成物阻害が課題として挙げられていた[2]

2006年に藤田らは自己集合性錯体を用い、生成物阻害を受けない触媒的DA反応を進行させることに成功した[3]が、未だこのような報告例は限られている(図1B)。

今回、著者らは環状水溶性ホスト分子の一つであるであるククルビット[7]ウリル(CB[7] )に着目した。CB[7]を用いることで、生体内を模倣した穏和な条件下不活性および無保護のN-アリル-2-フルフリルアミン誘導体の分子内DA反応(図1C)に成功したので紹介する。本手法では、競合的な生成物阻害の存在下でも高収率で反応が進行する。

図1. ホスト–ゲスト化学を用いたDiels–Alder反応

 

Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels–Alder Reactions

Palma, A.; Artelsmair, M.; Wu, G.; Lu, X.; Barrow, S. J.; Uddin, N.; Rosta, E.; Masson, E.; Scherman, O. A.Angew. Chem., Int. Ed. 2017, 56, 15688.

DOI: 10.1002/anie.201706487

論文著者の紹介

研究者:Oren A. Scherman

研究者の経歴:
-1999 B.A., Cornell University (Prof. Dotsevi Y. Sogah)
2004 Ph.D., California Institute of Technology (Prof. Robert H. Grubbs)
2004-2006 Posdoc, Eindhoven University of Technology (Prof. E.W. (Bert) Meijer)
2006- Lecturer and Next Generation Fellow of the Melville Laboratory, University of Cambridge
2011- Reader in Supramolecular and Polymer Chemistry, University of Cambridge
2013- Director of the Melville Laboratory, University of Cambridge
2015- Professor, University of Cambridge
研究内容:超分子、高分子化学

研究者:Eric Masson

研究者の経歴:
-2001 M.S., University of Lausanne
2005 Ph.D., Swiss Federal Institute of Technology Lausanne (Prof. Manfred Schlosser)
2005-2007 Posdoc, Yale University (Prof. Andrew D. Hamilton)
2007-2013 Assistant Professor, Ohio University
2013- Associate Professor, Ohio University
研究内容:超分子、分子認識化学

論文の概要

CB[7]自体は高い水溶性を有する分子でありながら、環内部は疎水性である。そのため、水中では疎水性化合物をCB内部へ取り込むことを好む。本研究ではこの性質を利用し、N-アリル-2-フルフリルアミン誘導体1をCB内部へ取り込み、DA反応を促進することに成功した(図1A)。反応は以下のような機構で進行する。プロトン化された1とCB[7]開口部に存在するカルボニル基との間にイオン-dipole相互作用が働き、疎水性残基(フラン、プロペニル)が内部に取り込まれ、基質のヘアピン誘発配座(HIC)が形成される(図1B)。このHIC形成によりジエンとジエノフィルが適切な位置に配置され反応が進行する。HIC形成にはフランとアルケンとのπ-π相互作用が関与しており、アルケン部位が飽和アルキル鎖のとき、アルキル鎖はCB内部に入ることができずHICは形成できない(図1C)。

本手法において、DA生成物2はCB内に原料より強く取り込まれる性質をもつものの顕著な生成物阻害は起こらず、触媒量のCB[7]を用いても高収率で反応は進む。各種速度論実験を行い、生成物のCB[7]の会合定数が原料のそれより数十倍強くなければ、触媒条件下であっても生成物阻害は問題にならないことがわかった。本研究で得られた知見は、ホスト–ゲスト化学による新規触媒としてはもちろん、Diels–Alderaseのより深い作用機序の理解としても重要なものである。

図2. (A) 基質適用範囲および半減期 (B) 本反応の触媒サイクル (C) ヘアピン誘発配座(HIC)

参考文献

  1. Review: (a) Klas, K.; Tsukamoto, S.; Sherman, D. H.; Williams, R. M. J. Org. Chem. 2015, 80, 11672. DOI: 10.1021/acs.joc.5b01951 A representative report, see: (b) Ose, T.; Watanabe, K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.; Oikawa, H.; Tanaka, I. Nature. 2003, 422, 185. DOI: 10.1038/nature01454
  2. (a) Kang, J.; Rebek, Jr., J. Nature, 1997, 385, 50. DOI: 1038/385050a0 (b) Marty, M.; Watson, C-. Z.; Twyman, L. J.; Nakash, M.; Sanders, J. K. M. Chem. Commun. 1998, 2265. DOI: 10.1039/A806070C
  3. (a) Yoshizawa, M.; Tamura, M.; Fujita, M. Science, 2006, 312, 251. DOI: 10.1126/science.1124985 Another example: (b) Howlader, P.; Das, P.; Zangrando, E.; Mukherjee, P. S. J. Am. Chem. Soc. 2016, 138, 1668. DOI: 10.1021/jacs.5b12237
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アルミニウム工業の黎明期の話 -Héroultと水力発電-
  2. Reaxys体験レポート:ログイン~物質検索編
  3. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  4. スーパーなパーティクル ースーパーパーティクルー
  5. 超分子ポリマーを精密につくる
  6. ノーベル化学賞解説 on Twitter
  7. 春季ACSMeetingに行ってきました
  8. ポケットにいれて持ち運べる高分子型水素キャリアの開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 未来のノーベル化学賞候補者
  2. sp3炭素のクロスカップリング反応の機構解明研究
  3. アザ-ウィティッヒ反応 Aza-Wittig Reaction
  4. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  5. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・Krausz研より
  6. ローランド・フィッシャー Roland A. Fischer
  7. Happy Friday?
  8. ハワイ州で日焼け止め成分に規制
  9. ペタシス反応 Petasis Reaction
  10. Post-Itのはなし ~吸盤ではない 2~

関連商品

注目情報

注目情報

最新記事

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

PAGE TOP