[スポンサーリンク]

化学者のつぶやき

“かぼちゃ分子”内で分子内Diels–Alder反応

[スポンサーリンク]

環状水溶性ホスト分子であるククルビット[7]ウリルを用いて生体内酵素Diels–Alderaseの活性を模倣することで、分子内Diels–Alder反応が進行することを見出した。

ホスト-ゲスト化学を用いた人工Diels–Alderaseの設計

ジエンとジエノフィルとのDiels–Alder(DA)反応は、立体特異的に6員環の環状骨格を構築可能であり、医薬品や天然物の合成に頻用されている。

また、生体内においてDA反応は多くの天然有機化合物の生合成経路として知られている[1]。この反応を触媒する酵素Diels–Alderaseは、基質を取り囲む水分子を遮断し基質と特異的に結合することで反応を効率的に進行させる。このようなDiels–Alderaseを模倣した人工分子システム構築にむけ、ホスト–ゲスト化学の活用が注目されている。

これまでにRebekらは自己集合性有機化合物をホスト分子触媒に用いることでDA反応が200倍加速されることを見出した(図1A)[2a]。しかし、天然のDiels–AlderaseやRebekらの報告例では、反応物と生成物との構造が類似しており、生成物がゲスト分子として振る舞うことに起因する反応の生成物阻害が課題として挙げられていた[2]

2006年に藤田らは自己集合性錯体を用い、生成物阻害を受けない触媒的DA反応を進行させることに成功した[3]が、未だこのような報告例は限られている(図1B)。

今回、著者らは環状水溶性ホスト分子の一つであるであるククルビット[7]ウリル(CB[7] )に着目した。CB[7]を用いることで、生体内を模倣した穏和な条件下不活性および無保護のN-アリル-2-フルフリルアミン誘導体の分子内DA反応(図1C)に成功したので紹介する。本手法では、競合的な生成物阻害の存在下でも高収率で反応が進行する。

図1. ホスト–ゲスト化学を用いたDiels–Alder反応

 

Cucurbit[7]uril as a Supramolecular Artificial Enzyme for Diels–Alder Reactions

Palma, A.; Artelsmair, M.; Wu, G.; Lu, X.; Barrow, S. J.; Uddin, N.; Rosta, E.; Masson, E.; Scherman, O. A.Angew. Chem., Int. Ed. 2017, 56, 15688.

DOI: 10.1002/anie.201706487

論文著者の紹介

研究者:Oren A. Scherman

研究者の経歴:
-1999 B.A., Cornell University (Prof. Dotsevi Y. Sogah)
2004 Ph.D., California Institute of Technology (Prof. Robert H. Grubbs)
2004-2006 Posdoc, Eindhoven University of Technology (Prof. E.W. (Bert) Meijer)
2006- Lecturer and Next Generation Fellow of the Melville Laboratory, University of Cambridge
2011- Reader in Supramolecular and Polymer Chemistry, University of Cambridge
2013- Director of the Melville Laboratory, University of Cambridge
2015- Professor, University of Cambridge
研究内容:超分子、高分子化学

研究者:Eric Masson

研究者の経歴:
-2001 M.S., University of Lausanne
2005 Ph.D., Swiss Federal Institute of Technology Lausanne (Prof. Manfred Schlosser)
2005-2007 Posdoc, Yale University (Prof. Andrew D. Hamilton)
2007-2013 Assistant Professor, Ohio University
2013- Associate Professor, Ohio University
研究内容:超分子、分子認識化学

論文の概要

CB[7]自体は高い水溶性を有する分子でありながら、環内部は疎水性である。そのため、水中では疎水性化合物をCB内部へ取り込むことを好む。本研究ではこの性質を利用し、N-アリル-2-フルフリルアミン誘導体1をCB内部へ取り込み、DA反応を促進することに成功した(図1A)。反応は以下のような機構で進行する。プロトン化された1とCB[7]開口部に存在するカルボニル基との間にイオン-dipole相互作用が働き、疎水性残基(フラン、プロペニル)が内部に取り込まれ、基質のヘアピン誘発配座(HIC)が形成される(図1B)。このHIC形成によりジエンとジエノフィルが適切な位置に配置され反応が進行する。HIC形成にはフランとアルケンとのπ-π相互作用が関与しており、アルケン部位が飽和アルキル鎖のとき、アルキル鎖はCB内部に入ることができずHICは形成できない(図1C)。

本手法において、DA生成物2はCB内に原料より強く取り込まれる性質をもつものの顕著な生成物阻害は起こらず、触媒量のCB[7]を用いても高収率で反応は進む。各種速度論実験を行い、生成物のCB[7]の会合定数が原料のそれより数十倍強くなければ、触媒条件下であっても生成物阻害は問題にならないことがわかった。本研究で得られた知見は、ホスト–ゲスト化学による新規触媒としてはもちろん、Diels–Alderaseのより深い作用機序の理解としても重要なものである。

図2. (A) 基質適用範囲および半減期 (B) 本反応の触媒サイクル (C) ヘアピン誘発配座(HIC)

参考文献

  1. Review: (a) Klas, K.; Tsukamoto, S.; Sherman, D. H.; Williams, R. M. J. Org. Chem. 2015, 80, 11672. DOI: 10.1021/acs.joc.5b01951 A representative report, see: (b) Ose, T.; Watanabe, K.; Mie, T.; Honma, M.; Watanabe, H.; Yao, M.; Oikawa, H.; Tanaka, I. Nature. 2003, 422, 185. DOI: 10.1038/nature01454
  2. (a) Kang, J.; Rebek, Jr., J. Nature, 1997, 385, 50. DOI: 1038/385050a0 (b) Marty, M.; Watson, C-. Z.; Twyman, L. J.; Nakash, M.; Sanders, J. K. M. Chem. Commun. 1998, 2265. DOI: 10.1039/A806070C
  3. (a) Yoshizawa, M.; Tamura, M.; Fujita, M. Science, 2006, 312, 251. DOI: 10.1126/science.1124985 Another example: (b) Howlader, P.; Das, P.; Zangrando, E.; Mukherjee, P. S. J. Am. Chem. Soc. 2016, 138, 1668. DOI: 10.1021/jacs.5b12237
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 企業における研究開発の多様な目的
  2. MFCA -環境調和の指標、負のコストの見える化-
  3. トリテルペノイドの「トリ」!?octanorcucurbitac…
  4. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  5. 合成化学の”バイブル”を手に入れよう
  6. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo …
  7. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポ…
  8. アルキンから環状ポリマーをつくる

注目情報

ピックアップ記事

  1. 2016年8月の注目化学書籍
  2. 2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」
  3. ポンコツ博士の海外奮闘録XVI ~博士,再現性を高める②~
  4. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part I
  5. gem-ジフルオロアルケンの新奇合成法
  6. Reaxys Prize 2010発表!
  7. 【追悼企画】水銀そして甘み、ガンへー合成化学、創薬化学への展開ー
  8. 局所的な“粘度”をプローブする羽ばたくFLAP蛍光分子
  9. 2005年8月分の気になる化学関連ニュース投票結果
  10. ダン・シェヒトマン博士の講演を聞いてきました。

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP