[スポンサーリンク]

ケムステニュース

積水化学と住友化学、サーキュラーエコノミーで協力。ゴミ原料にポリオレフィンを製造

[スポンサーリンク]

積水化学工業株式会社と住友化学株式会社は2月27日、ゴミを原料として樹脂材料の「ポリオレフィン」を製造する技術の社会実装に向けて協力関係を構築すると発表した。ゴミをまるごとエタノールに変換する生産技術の開発に成功した積水化学と、ポリオレフィンの製造に関する技術・ノウハウを有する住友化学が協力することで、ゴミをポリオレフィンにケミカルリサイクルするサーキュラーエコノミー(循環型経済)の取り組みを推進する。 (引用:HEDGE GUIDE 3月2日)

ゴミにはいろいろな物質が混じってい上、その物質の割合が変化するため効率よく変換することが難しいと言われていますが、積水化学では、家庭や企業から排出される廃棄物からエタノールを作り出す技術を開発してきました。2017年には、LanzaTech社と共同で微生物を使って高い純度のエタノールをパイロットプラントで合成することに成功しています。

LanzaTech社については以前のケムスケニュースで、製鉄所や製油所などの一酸化炭素が含まれる排ガスから微生物の発酵技術を使ってエタノールを製造する技術について紹介しました。微生物が一酸化炭素をエタノールにするという技術は共通のようですが、ガスの精製に積水化学の工夫があるようです。オリックス資源循環株式会社の寄居工場では、ガス化溶融炉という設備でゴミを処理しています。この処理方法では、ガスが大量に発生するため、そのガスを同じ工場内に設置されているエタノール生産パイロットプラントに送ることでエタノールを生産しています。燃焼によって発生したガスにはエタノール生産に使われる一酸化炭素と水素以外にも微生物の活動を弱める400種類の化合物が含まれていて、積水化学ではそれらを除去する技術を開発しました。また、ガスの供給がなくなると微生物が死滅するため、微生物を仮死状態にする管理技術も確立したそうです。現在全国の焼却設備の10%がこのガス化溶融炉であるため、この既存の設備に付随させることでエタノールを生産できるようになるようです。

ガス溶融炉におけるごみ処理(出典:国立環境研究所

一方住友化学では、バイオエタノールからエチレンを合成し、それを使ってポリエチレンやポリプロピレンなどを製造する技術開発を行います。エチレンは、ナフサに水蒸気を高温で反応させて合成されますが、エタノールからの合成する場合には、酸触媒を使って脱水反応で合成されます。プラントスケールの合成では不均一触媒を使って合成されると予想されます。その場合には、バイオエタノールに含まれる不純物による触媒の被毒を最小限にすることが一つの克服すべき課題かもしれません。

企業が関わる共同研究の場合、大学と企業の場合や、大学を中心としていくつかの企業が関わる場合、材料メーカーと最終製品製造メーカーの場合が多く、積水化学と住友化学という大手の化学企業同士が協力関係を築くことは珍しいと思いますが、2016年にそれぞれのフィルム製造会社を統合して住化積水フィルム株式会社を設立したため、元々協力関係はあったのかもしれません。

住処積水フィルムが製造する農業向けフィルム(出典:日本農業システム

ゴミからエタノールを製造することに関して、ごみ由来のすべての炭素が一酸化炭素に変換されるはずがなく、ガス化によって多くが二酸化炭素となり大気中に放出されると予想されます。そのため、エタノールの収率を上げる技術が次のステップとして必要になるのではないかと思います。バイオエタノールからポリオレフィンを製造する研究について、バイオエタノールの純度が保証されていれば、技術的な課題はないと感じるかもしれませんが、最適な反応条件を設定することが一つの課題だと思います。製造スケールでの化学品を製造する場合、原料の品質が不純物を含めて常に一定であることが安定な製造のためには重要です。しかしながら、バイオエタノールには特有の微量が含まれているかつ品質が燃焼するゴミによって変化する可能性があるため、バイオエタノール向けのエチレン合成プロセスを研究する必要があると思います。さらにこの場合は、プラスチックが最終製品となるわけであり、バイオエタノールから作った最終製品が石油由来の原料と同等の品質を持たなくてはいけません。製造コストも石油からの製造と比べて高すぎないことがビジネス上必要です。このようにいくつかの課題が考えられ、今後の両社の技術開発に期待します。

日本の場合、プラスチックなどのごみは焼却処分が多く、そこで発生した熱を使って温水プールを作っているぐらいしかエネルギーが活用されていません。本技術を使えばプラスチックゴミからプラスチックを作り出すことができるわけであり、不便を伴うほどのプラスチック不使用の動きに歯止めがかかるのではないかと思います。

関連書籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 信越化学、塩化ビニル樹脂を値上げ
  2. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏…
  3. 博士後期で学費を企業が肩代わり、北陸先端大が国内初の制度
  4. 第二回触媒科学国際シンポジウム
  5. 米デュポン、高機能化学部門を分離へ
  6. 犬の「肥満治療薬」を認可=米食品医薬品局
  7. 人工タンパク質、合成に成功 北陸先端大、エイズ薬剤開発に道
  8. 2021年化学企業トップの年頭所感を読み解く

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. sp2-カルボカチオンを用いた炭化水素アリール化
  2. ケミカルタイムズ 紹介記事シリーズ
  3. 有機合成化学協会誌2019年7月号:ジアステレオ選択的Joullié-Ugi三成分反応・(-)-L-755,807 の全合成・結晶中構造転移・酸素付加型反応・多孔性構造体
  4. 初めての減圧蒸留
  5. 光触媒ラジカルカスケードが実現する網羅的天然物合成
  6. 「糖化学ノックイン」領域紹介PVを制作頂きました!
  7. ボールミルを用いた、溶媒を使わないペースト状 Grignard 試薬の合成
  8. 重水は甘い!?
  9. 【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など
  10. 社会に出てから大切さに気付いた教授の言葉

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP