[スポンサーリンク]

一般的な話題

ついに成功した人工光合成

[スポンサーリンク]

 

生きとし生けるすべてのものを育む太陽のめぐみ。植物が太陽の光を受け取り、わたしたち動物がその恩恵を食べて生活する。自然は、太陽に端を発しよどみなく流れるエネルギーと、物質の循環によって成り立っています。

2011年、日本企業の研究グループが、画期的な人工光合成の技術開発を報告しました。光触媒で知られる二酸化チタンと、金属錯体触媒を組み合わせ、光からエネルギーを取り出し、水中で二酸化炭素から有機化合物のギ酸を合成することに成功しました。ギ酸さえ作ることができれば、従来の有機化学の手法を用いて、どうとでも有用な化合物に変換できるでしょう。

 

今回、紹介する論文はこちらです。

“Selective CO2 Conversion to Formate Conjugated with H2O Oxidation Utilizing Semiconductor/Complex Hybrid Photocatalysts” Shunsuke Sato et al.

 J. Am. Chem. Soc., 2011, DOI: 10.1021/ja204881d 

 

この報告の斬新さをよりよく理解するために、まず少しばかり植物の話をします。

 

水分子も二酸化炭素分子もとても安定な物質で、なかなか化学変化を起こせません。原始の生命は、水分子よりも活発な硫化水素分子を用いることで、この困難を克服していました。しかし、硫化水素は地球上に限られた場所でしか産出しません。植物の先祖は、硫化水素分子の代わりに水分子を使用するという奇策に出ます。従来1回だけだった光の取り込みを、連続して2回行うことにしたのです。硫化水素分子と異なり、1回分だけではどうあがいても足りないエネルギーを、2回分、水分子につぎこみます。システムにもたらされる2回のエネルギーの上昇を喩えてこの戦略を「Zスキーム」と呼びます。今回、日本企業が報告した人工光合成のポイントもこのZスキームにあります。

太陽光にもとづいて二酸化炭素を還元して有機化合物を生産することは、地球温暖化や化石燃料の枯渇に対処する上でも重要さを増している課題です。従来のアプローチでは、トリエタノールアミンのような物質を犠牲として必要としたり、そうでなければ二酸化炭素を還元する以前に水が分解されて酸素分子と水素分子になってしまい思うように二酸化炭素が反応しなかったり、といくつかの課題がありました。

人工光合成版Zスキームの第1段階では、光触媒でおなじみ二酸化チタンに白金を加えたものを用い、高効率に水を反応させます。人工光合成版Zスキームの第2段階が、二酸化炭素を取り込むためのキモで、ルテニウム(Ru)錯体を、半導体のひとつであるリン化インジウム(InP)と組み合わせたものを用い、目的の反応を遂行しギ酸を得ます。

f2.PNG

ギ酸 (formic acid)

太陽光を使って商業ベースで効率よく可能な人工光合成への道筋を打ち出した今回の報告に、将来のエネルギー問題は救われるのでしょうか、今後の技術革新に注目が集まります。

 

関連書籍

[amazonjs asin=”4062576120″ locale=”JP” title=”光合成とはなにか―生命システムを支える力 (ブルーバックス)”][amazonjs asin=”4062575450″ locale=”JP” title=”高校数学でわかる半導体の原理―電子の動きを知って理解しよう (ブルーバックス)”]
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 治療応用を目指した生体適合型金属触媒:② 細胞外基質・金属錯体を…
  2. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー
  3. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  4. 【PR】 Chem-Stationで記事を書いてみませんか?【ス…
  5. リモートワークで結果を出す人、出せない人
  6. 化学とウェブのフュージョン
  7. Al=Al二重結合化合物
  8. マイクロ波による事業創出やケミカルリサイクルについて/マイクロ波…

注目情報

ピックアップ記事

  1. 『Ph.D.』の起源をちょっと調べてみました② 化学(科学)編
  2. 陰イオン認識化学センサーの静水圧制御に成功~高選択的な分子検出法を確立~
  3. 研究助成金を獲得する秘訣
  4. 拡張Pummerer反応による簡便な直接ビアリール合成法
  5. 解毒薬のはなし その2 化学兵器系-1
  6. フェニル酢酸を基質とするC-H活性化型溝呂木-Heck反応
  7. ネイティブ・ケミカル・ライゲーション Native Chemical Ligation (NCL)
  8. 化学のうた
  9. マクドナルドなど9社を提訴、発がん性物質の警告表示求め=カリフォルニア州
  10. 論文執筆で気をつけたいこと20(2)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP