[スポンサーリンク]

化学者のつぶやき

ホウ素は求電子剤?求核剤?

[スポンサーリンク]

原子番号5番のホウ素(B)は耐熱ガラスやホウ酸ダンゴなどでおなじみです。有機合成化学においては鈴木カップリングの中枢を担う大事な元素ですね。

有機化学の反応は、簡単に言ってしまえば求核剤と求電子剤との反応です。
炭素や窒素、酸素などの元素は、求電子剤・求核剤の両方がそれぞれ多数開発されて今日の複雑な合成が可能になっているわけですが、ホウ素はずっと求電子剤でした。
教科書にも『空のp軌道があるのでホウ素は求核剤の攻撃の標的になっている(ウォーレン有機化学下巻)』とあるとおり、この空の軌道がある限りホウ素は求電子剤であると考えられてきました。

今回はその常識を打ち破るホウ素化合物の紹介なのですが、その前に過去に報告されている3種類のホウ素求核剤をまずはご覧ください。

 ホスフィン安定化ボリルアニオン

ひとつは今元らによるホスフィンボランのリチオ化物。トリメチルクロロシランやベンズアルデヒドといった求電子剤に対して、ホウ素が求核剤として攻撃します。これ自体は単離されていないので構造は不明ですが、ホウ素はsp3混成軌道の状態になっていると考えられます。[1]

ボリルリチウム

もうひとつは瀬川・山下・野崎らによるボリルリチウムです。この分子は結晶構造からホウ素はsp2混成軌道をとっていて、空のp軌道があるにもかかわらずホウ素が求核剤として様々な求電子剤や金属と反応する希有な化合物です。理由はホウ素とリチウムとの間の結合が限りなくイオン結合的で、ボリルアニオンとしての性質に近いからであると説明されています。[2]

ボリレン架橋マンガン錯体

今回紹介するドイツのBraunschwaigらの過去の成果になるのですが、ホウ素が2つのマンガンに挟まれたsp混成を取る錯体も、ヨウ化メチルと反応してメチル基がホウ素に付加することから、このホウ素も求核的であると言えます。[3]

さて、それでは今回Braunschwaigらが合成したホウ素求核剤はどんなものなのでしょうか。[4]

NHC安定化πボリルアニオン

ホウ素はボロールという5員環を構成しており、sp2混成です。ホウ素はもうひとつ共有結合が作れますが、共有結合ではなくNヘテロ環カルベンによる配位を受けています。このままではホウ素上に電子が1コ余ったラジカルですが、さらに電子を与えることでボロール上に電子が広がったアニオンになっています。つまり、sp2のホウ素に対して、もともと空だったp軌道に電子を2コ入れてしまったコトになります。それを、カルベンの配位やボロールの芳香族性といった手法を用いて安定化しています。
この化合物に対してヨウ化メチルを反応させると、ホウ素が求核剤として攻撃してメチル化が起きました。
「本来求電子的であるはずのホウ素のp軌道を求核的に反応させた」という、これこそまさに極性転換ですね。


 

電子状態や結合をデザインすることで、反応性を自在に変化させる。これだけでも魅力的な研究ですが、それから得られる新しい反応性によってこれまで合成不可能であった化合物達が合成できるようになり、材料や医薬など様々な分野に発展することを期待しています。

参考文献

  1. Imamoto, T.; Hikosaka, T. J. Org. Chem199459, 6753-6759.
  2. Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. J. Am. Chem. Soc. 2008130, 16069-16079.
  3. Braunschweig, H.; Burzler, M.; Dewhurst, R. D.; Radacki, K. Angew. Chem. Int. Ed. 200847, 5650. DOI: 10.1002/anie.200801848
  4. Braunschweig, H.; Chiu, C. W.; Radacki, K,; Kupfer, T. Angew. Chem. Int. Ed. 2010, ASAP. DOI: 10.1002/anie.200906884
The following two tabs change content below.
タスマニアデビル

タスマニアデビル

博士(工学)。大学勤務。 世界最大の肉食有袋類 絶滅危惧種 生息地:有機金属化学 主食:不安定な結合 体長:2.291Å 体重:Rind3個分
タスマニアデビル

最新記事 by タスマニアデビル (全て見る)

関連記事

  1. ワサビ辛み成分受容体を活性化する新規化合物
  2. 書物から学ぶ有機化学4
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑧(解答編…
  4. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  5. 内部アルケンのアリル位の選択的官能基化反応
  6. 日本化学会ケムステイブニングミキサーへのお誘い
  7. 「鍛えて成長する材料」:力で共有結合を切断するとどうなる?そして…
  8. ケムステイブニングミキサー2018ー報告

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David Sarlah研より
  2. ダイエット食から未承認薬
  3. 2007年10大化学ニュース
  4. フェルナンド・アルベリシオ Fernando Albericio
  5. 向山・鈴木グリコシル化反応 Mukaiyama-Suzuki Glycosylation
  6. 鉄錯体による触媒的窒素固定のおはなし-1
  7. カチオン重合 Cationic Polymerization
  8. 化学者がコンピューター計算を行うべきか?
  9. 「タキソールのTwo phase synthesis」ースクリプス研究所Baran研より
  10. ノーベル化学賞を担った若き開拓者達

関連商品

注目情報

注目情報

最新記事

続・企業の研究を通して感じたこと

自分は、2014年に「企業の研究を通して感じたこと」という記事を執筆しましたが、それから5年が経ち、…

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

Chem-Station Twitter

PAGE TOP