[スポンサーリンク]

化学者のつぶやき

ホウ素は求電子剤?求核剤?

[スポンサーリンク]

原子番号5番のホウ素(B)は耐熱ガラスやホウ酸ダンゴなどでおなじみです。有機合成化学においては鈴木カップリングの中枢を担う大事な元素ですね。

有機化学の反応は、簡単に言ってしまえば求核剤と求電子剤との反応です。
炭素や窒素、酸素などの元素は、求電子剤・求核剤の両方がそれぞれ多数開発されて今日の複雑な合成が可能になっているわけですが、ホウ素はずっと求電子剤でした。
教科書にも『空のp軌道があるのでホウ素は求核剤の攻撃の標的になっている(ウォーレン有機化学下巻)』とあるとおり、この空の軌道がある限りホウ素は求電子剤であると考えられてきました。

今回はその常識を打ち破るホウ素化合物の紹介なのですが、その前に過去に報告されている3種類のホウ素求核剤をまずはご覧ください。

 ホスフィン安定化ボリルアニオン

ひとつは今元らによるホスフィンボランのリチオ化物。トリメチルクロロシランやベンズアルデヒドといった求電子剤に対して、ホウ素が求核剤として攻撃します。これ自体は単離されていないので構造は不明ですが、ホウ素はsp3混成軌道の状態になっていると考えられます。[1]

ボリルリチウム

もうひとつは瀬川・山下・野崎らによるボリルリチウムです。この分子は結晶構造からホウ素はsp2混成軌道をとっていて、空のp軌道があるにもかかわらずホウ素が求核剤として様々な求電子剤や金属と反応する希有な化合物です。理由はホウ素とリチウムとの間の結合が限りなくイオン結合的で、ボリルアニオンとしての性質に近いからであると説明されています。[2]

ボリレン架橋マンガン錯体

今回紹介するドイツのBraunschwaigらの過去の成果になるのですが、ホウ素が2つのマンガンに挟まれたsp混成を取る錯体も、ヨウ化メチルと反応してメチル基がホウ素に付加することから、このホウ素も求核的であると言えます。[3]

さて、それでは今回Braunschwaigらが合成したホウ素求核剤はどんなものなのでしょうか。[4]

NHC安定化πボリルアニオン

ホウ素はボロールという5員環を構成しており、sp2混成です。ホウ素はもうひとつ共有結合が作れますが、共有結合ではなくNヘテロ環カルベンによる配位を受けています。このままではホウ素上に電子が1コ余ったラジカルですが、さらに電子を与えることでボロール上に電子が広がったアニオンになっています。つまり、sp2のホウ素に対して、もともと空だったp軌道に電子を2コ入れてしまったコトになります。それを、カルベンの配位やボロールの芳香族性といった手法を用いて安定化しています。
この化合物に対してヨウ化メチルを反応させると、ホウ素が求核剤として攻撃してメチル化が起きました。
「本来求電子的であるはずのホウ素のp軌道を求核的に反応させた」という、これこそまさに極性転換ですね。


 

電子状態や結合をデザインすることで、反応性を自在に変化させる。これだけでも魅力的な研究ですが、それから得られる新しい反応性によってこれまで合成不可能であった化合物達が合成できるようになり、材料や医薬など様々な分野に発展することを期待しています。

参考文献

  1. Imamoto, T.; Hikosaka, T. J. Org. Chem199459, 6753-6759.
  2. Segawa, Y.; Yamashita, M.; Nozaki, K. Science2006314, 113-115. J. Am. Chem. Soc. 2008130, 16069-16079.
  3. Braunschweig, H.; Burzler, M.; Dewhurst, R. D.; Radacki, K. Angew. Chem. Int. Ed. 200847, 5650. DOI: 10.1002/anie.200801848
  4. Braunschweig, H.; Chiu, C. W.; Radacki, K,; Kupfer, T. Angew. Chem. Int. Ed. 2010, ASAP. DOI: 10.1002/anie.200906884

タスマニアデビル

投稿者の記事一覧

博士(工学)。大学勤務。
世界最大の肉食有袋類 絶滅危惧種 生息地:有機金属化学 主食:不安定な結合 体長:2.291Å 体重:Rind3個分

関連記事

  1. 還元的にアルケンを炭素官能基で修飾する
  2. 有機反応を俯瞰する ー付加脱離
  3. ローカル環境でPDFを作成する(Windows版)
  4. 研究テーマ変更奮闘記 – PhD留学(後編)
  5. 同位体効果の解釈にはご注意を!
  6. NMRの基礎知識【原理編】
  7. アライン種の新しい発生法
  8. MEDCHEM NEWS 30-4号「ペプチド化学」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 半導体で水から水素 クリーンエネルギーに利用
  2. 第38回「分子組織化の多様な側面を理解する」Neil Champness教授
  3. 化学者のためのエレクトロニクス講座~電解銅めっき編~
  4. 鉄鋼のように強いポリプロピレン
  5. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン校・Dong研より
  6. ケイ素置換gem-二クロムメタン錯体の反応性と触媒作用
  7. 不安定試薬の保管に!フードシーラーを活用してみよう
  8. 研究費総額100万円!30年後のミライをつくる若手研究者を募集します【academist】
  9. 有望ヘリウム田を発見!? ヘリウム不足解消への希望
  10. 中村栄一 Eiichi Nakamura

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

注目情報

最新記事

薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』

3月に入って2022年度も終わりが近づき、いよいよ学会年会シーズンになってきました。コロナ禍も終わり…

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感度センシング

第493回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 早水研究室の本間 千柊(ほ…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP