[スポンサーリンク]

化学者のつぶやき

高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定まで

atomic_microscopy_0.jpg

(画像は論文[2]より)

 「分子のカタチ」は普通の顕微鏡では到底見えないほど小さいものです。しかし2009年にIBMの研究者が化学結合に至るまで鮮明に観測[1]して以来、「分子を目で見る」ことが夢物語ではなくなりました。(参考:「顕微鏡で有機分子の形が見えた!」「顕微鏡で有機化合物のカタチを決める!」)。

その研究指揮者であるLeo Gross氏が執筆したPerspective記事[2]が2011年に公開され、サブアトミックスケールにおける顕微鏡測定の進歩が包括的に紹介されています。これによれば、最近ではフロンティア軌道の可視化や、元素種の特定までが可能になっているようです。実際にペンタセンのフロンティア軌道を顕微鏡で観測したものが、冒頭の画像a,bです。計算結果c,dと見事に一致しています。

現在サブアトミックスケールの分解能を実現できている顕微鏡は、非接触型原子間力顕微鏡(NC-AFM)と、走査型トンネル顕微鏡(STM)の二種類。

どちらも走査型プローブ顕微鏡と呼ばれるタイプに属し、「試料表面を探針でなぞって得られる信号を、画像に変換する」というのが大まかな原理になっています。一般的には使われる探針が細ければ細いほど、分解能が上がるとされています。分解能をサブアトミックスケールにまで向上させた鍵は、どちらも単分子探針を用いたことにあります。すなわち、AFMでは一酸化炭素分子(CO)、STMでは水素分子(H2)[3]を先端につけた探針を用いることで、分子の化学結合に至るまで観測が可能になったのです。

測定信号の違いに由来して、それぞれやや異なる画像が得られてきます。違いを簡単にまとめておきます。

STM

・試料に電気を流す必要がある=導電体にしか使えない
・探針-試料間の誘起力を記述する理論がなく、シミュレーションが難しい
・分子間相互作用も解析可能
・電子軌道(HOMO/LUMO)が観測可能

NC-AFM

・試料に電気を流す必要がない=絶縁体にも使える
・DFT計算でシミュレーションできる
・原子間力を測るため、コントラストの鈍いぼけた画像になる
・C-H結合が観測可能

以下のSTM画像とAFM画像(冒頭図e)を比較してみると、違いがはっきりすると思います。

atomic_microscopy_1.jpg

H2探針STMによる顕微鏡像(論文[2]より)

 特にSTMでは、分子の電気的特性を見ることができるため、電子軌道(=電子局在の様子)を観測することができます。印加電圧の正負を逆転させれば、HOMO/LUMOを区別して見ることもできます。冒頭図a,bの撮影においてはSTMが用いられていますが、これぐらいならばそれほど高い分解能を必要としないらしく、単分子短針を使わずとも済むそうです。

また特定距離で元素種ごとに原子間力の絶対値が異なることを利用し、AFMで元素種を区別することまでもが可能になっています[4]。例えば下図はある半導体表面をNC-AFMで観測したものですが、それぞれ赤=ケイ素、青=スズ、緑=鉛と特定できています。合金の元素分布状態や、不純物の混入度合いなどが原子レベルでわかるということです。しかし現状では重原子を含まず、非平面構造をもつ有機分子に適用するのはまだ難しいようです。

atomic_microscopy_2.jpg

(論文[2]より)

古くはレーウェンフックの顕微鏡から、最近ではカミオカンデに至るまで―「見えないものを見えるようにする」分析技術は、世界を見る目を変えてしまうほどのインパクトがあります。つまり技術の進歩こそは、我々に新たな世界観をもたらしてくれる合理的アプローチの一つなのです。

  • 関連論文
[1] (a) Gross, L. et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210 (b) Gross, L. et al. Nature Chem. 2010, 2, 821. DOI: 10.1038/NCHEM.765
[2] Gross, L. Nature Chem. 2011, 3, 273. DOI: 10.1038/NCHEM.1008
[3] (a) Tiemirov, R. et al. New. J. Phys. 2008, 10, 053012. (b) Weiss, C. et al. Phys. Rev. Lett. 2010, 105, 086103 (c) Weiss, C. et al. J. Am. Chem. Soc. 2010, 132, 11864. DOI: 10.1021/ja104332t
[4] Sugimoto, T. et al. Nature 2007, 446, 64. doi:10.1038/nature05530

  • 関連リンク

見よ、核の周りを回る電子軌道を捉えた世界初の画像を!(GIZMODO)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シクロプロパンの数珠つなぎ
  2. 化学研究ライフハック:情報収集の機会損失を減らす「Read It…
  3. レビュー多くてもよくね?
  4. リチウムイオンに係る消火剤電解液のはなし
  5. ナノの世界に朗報?!-コラニュレンのkg合成-
  6. 単分子レベルでの金属―分子接合界面構造の解明
  7. CYP総合データベース: SuperCYP
  8. ペプチド模倣体としてのオキセタニルアミノ酸

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 直鎖アルカンの位置選択的かつ立体選択的なC–H結合官能基化
  2. エッフェル塔
  3. マーティン・カープラス Martin Karplus
  4. 第五回 化学の力で生物システムを制御ー浜地格教授
  5. 1と2の中間のハナシ
  6. 骨粗しょう症治療薬、乳がん予防効果も・米国立がん研究所
  7. 低投資で効率的な英語学習~有用な教材は身近にある!
  8. Comprehensive Organic Transformations: A Guide to Functional Group Preparations
  9. 人の鼻の細菌が抗菌作用がある化合物をつくっていたーMRSAに効果
  10. シコニン

関連商品

注目情報

注目情報

最新記事

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

イナミドと光学活性なアルケニルスルホキシドから、2位および3位に置換基をもつ1,4-ジカルボニル骨格…

サッカーボール型タンパク質ナノ粒子TIP60の設計と構築

第163回目のスポットライトリサーチは、慶應義塾大学理工学部 ・川上了史(かわかみ のりふみ)講師に…

PAGE TOP