[スポンサーリンク]

化学者のつぶやき

高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定まで

atomic_microscopy_0.jpg

(画像は論文[2]より)

 「分子のカタチ」は普通の顕微鏡では到底見えないほど小さいものです。しかし2009年にIBMの研究者が化学結合に至るまで鮮明に観測[1]して以来、「分子を目で見る」ことが夢物語ではなくなりました。(参考:「顕微鏡で有機分子の形が見えた!」「顕微鏡で有機化合物のカタチを決める!」)。

その研究指揮者であるLeo Gross氏が執筆したPerspective記事[2]が2011年に公開され、サブアトミックスケールにおける顕微鏡測定の進歩が包括的に紹介されています。これによれば、最近ではフロンティア軌道の可視化や、元素種の特定までが可能になっているようです。実際にペンタセンのフロンティア軌道を顕微鏡で観測したものが、冒頭の画像a,bです。計算結果c,dと見事に一致しています。

現在サブアトミックスケールの分解能を実現できている顕微鏡は、非接触型原子間力顕微鏡(NC-AFM)と、走査型トンネル顕微鏡(STM)の二種類。

どちらも走査型プローブ顕微鏡と呼ばれるタイプに属し、「試料表面を探針でなぞって得られる信号を、画像に変換する」というのが大まかな原理になっています。一般的には使われる探針が細ければ細いほど、分解能が上がるとされています。分解能をサブアトミックスケールにまで向上させた鍵は、どちらも単分子探針を用いたことにあります。すなわち、AFMでは一酸化炭素分子(CO)、STMでは水素分子(H2)[3]を先端につけた探針を用いることで、分子の化学結合に至るまで観測が可能になったのです。

測定信号の違いに由来して、それぞれやや異なる画像が得られてきます。違いを簡単にまとめておきます。

STM

・試料に電気を流す必要がある=導電体にしか使えない
・探針-試料間の誘起力を記述する理論がなく、シミュレーションが難しい
・分子間相互作用も解析可能
・電子軌道(HOMO/LUMO)が観測可能

NC-AFM

・試料に電気を流す必要がない=絶縁体にも使える
・DFT計算でシミュレーションできる
・原子間力を測るため、コントラストの鈍いぼけた画像になる
・C-H結合が観測可能

以下のSTM画像とAFM画像(冒頭図e)を比較してみると、違いがはっきりすると思います。

atomic_microscopy_1.jpg

H2探針STMによる顕微鏡像(論文[2]より)

 特にSTMでは、分子の電気的特性を見ることができるため、電子軌道(=電子局在の様子)を観測することができます。印加電圧の正負を逆転させれば、HOMO/LUMOを区別して見ることもできます。冒頭図a,bの撮影においてはSTMが用いられていますが、これぐらいならばそれほど高い分解能を必要としないらしく、単分子短針を使わずとも済むそうです。

また特定距離で元素種ごとに原子間力の絶対値が異なることを利用し、AFMで元素種を区別することまでもが可能になっています[4]。例えば下図はある半導体表面をNC-AFMで観測したものですが、それぞれ赤=ケイ素、青=スズ、緑=鉛と特定できています。合金の元素分布状態や、不純物の混入度合いなどが原子レベルでわかるということです。しかし現状では重原子を含まず、非平面構造をもつ有機分子に適用するのはまだ難しいようです。

atomic_microscopy_2.jpg

(論文[2]より)

古くはレーウェンフックの顕微鏡から、最近ではカミオカンデに至るまで―「見えないものを見えるようにする」分析技術は、世界を見る目を変えてしまうほどのインパクトがあります。つまり技術の進歩こそは、我々に新たな世界観をもたらしてくれる合理的アプローチの一つなのです。

  • 関連論文
[1] (a) Gross, L. et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210 (b) Gross, L. et al. Nature Chem. 2010, 2, 821. DOI: 10.1038/NCHEM.765
[2] Gross, L. Nature Chem. 2011, 3, 273. DOI: 10.1038/NCHEM.1008
[3] (a) Tiemirov, R. et al. New. J. Phys. 2008, 10, 053012. (b) Weiss, C. et al. Phys. Rev. Lett. 2010, 105, 086103 (c) Weiss, C. et al. J. Am. Chem. Soc. 2010, 132, 11864. DOI: 10.1021/ja104332t
[4] Sugimoto, T. et al. Nature 2007, 446, 64. doi:10.1038/nature05530

  • 関連リンク

見よ、核の周りを回る電子軌道を捉えた世界初の画像を!(GIZMODO)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 反応の選択性を制御する新手法
  2. 世界初の有機蓄光
  3. 金属中心に不斉を持つオレフィンメタセシス触媒
  4. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を…
  5. インターネットを活用した英語の勉強法
  6. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  7. どろどろ血液でもへっちゃら
  8. これで日本も産油国!?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界の最新科学ニュース雑誌を日本語で読めるーNature ダイジェストまとめ
  2. 劉 龍 Ryong Ryoo
  3. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)
  4. ビス(トリシクロヘキシルホスフィン)ニッケル(II)ジクロリド : Bis(tricyclohexylphosphine)nickel(II) Dichloride
  5. 2010年イグノーベル賞決定!
  6. カーボンナノチューブの毒性を和らげる長さ
  7. 『分子科学者がいどむ12の謎』
  8. IBX酸化 IBX Oxidation
  9. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  10. ノーベル化学賞を担った若き開拓者達

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌 紹介記事シリーズ

有機合成化学に関わる方ならばおなじみの有機合成化学協会誌。有機合成化学協会の会員誌であり、様々な有機…

固体NMR

固体NMR(Solid State NMR)とは、核磁気共鳴 (NMR) 分光法の一種で固体そのもの…

NMRの基礎知識【測定・解析編】

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。前回の【原理…

「人工知能時代」と人間の仕事

デジタル技術の進歩は著しく、特に、人工知能(AI)と呼ばれる機械学習システムの進歩は、世界の労働者の…

特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲルの開発

第134回のスポットライトリサーチは、京都大学大学院 工学研究科 合成·生物化学専攻 浜地研究室の重…

有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成

有機合成化学協会が発行する有機合成化学協会誌、2018年1月号が昨日オンライン公開されました。…

Chem-Station Twitter

PAGE TOP