[スポンサーリンク]

化学者のつぶやき

力学的エネルギーで”逆”クリック!

[スポンサーリンク]

[注意] 紹介した本論文は現在真偽が調査されており、非常に残念ですが捏造の可能性が高いという結果が出ています。画期的な研究であっただけに非常に残念です。詳細はこちら。[追記 2014年12月17日]

[注意】 本論文は2015年2月20日に取り下げされました。捏造であったという結果です。残念です。

Unclicking the Click: Mechanically Facilitated 1,3-Dipolar Cycloreversions
Brantley, J. N.; Wiggins, K. M.; Bielawski, C. W.
Science2011, 333, 1606-1609. DOI: 10.1126/science.1207934

アルキンとアジドのクリック反応により生じる1,2,3-トリアゾールを、力学的エネルギーを加えることで再びアルキンとアジドに変換したという報告をご紹介します(図は全て論文より引用)。

トリアゾールは、芳香族性を有するため非常に安定な構造として知られていますが、いかにしてこのトリアゾールを”逆”クリックしたのでしょうか。

mechanotri2.jpg

図1. 超音波照射前(黒)、照射後(赤)、再クリック後(青)、熱処理後(緑)のGPC測定結果

 

これまでもケムステでは、力学的エネルギーによる分子構造の変換について紹介してきました(力学的活性化力を加えると変色するプラスチック)。今回は、その力学的エネルギーを用いた分子変換の最新の成果で、安定なはずのトリアゾールが超音波によりアルキンとアジドに変換されたという驚きの報告がなされています。
これまでの報告により、力学的エネルギーとして超音波を用いたとき、超音波が分子量の大きいポリマー鎖に伝わることで力学的エネルギーの伝達が起こることが明らかとされてきました。そこで筆者らは今回、中心部位にトリアゾール、両端にはポリマー(PMA)を有する分子を用いて実験を行っています(冒頭図上段)。

分子量の大きなポリマーの方が、それだけ大きな力学的エネルギーがトリアゾール部位に伝わるため、全体で6万以上の分子量を有するポリマーにおいて、超音波の照射に伴う分子量の減少が観測されました(図1、反応前が黒線、超音波後が赤線)。2~5時間程度の超音波の照射で、分子量がほぼ半分になっていることから、反応の進行率の高さが伺えます。

超音波照射で分子量が小さくなったからって、トリアゾールが切断されたとは限らないのでは?
ポリマー主鎖がちぎれたり、トリアゾール近傍のエステルが切れてもおかしくないのでは?

と、考える方もいらっしゃるかもしれません。

そこで筆者らは、超音波でトリアゾールを切断した後に、再びクリック反応を行い、力学的エネルギーにより生じたアルキンとアジドが再び反応に使えることを示しています(図1、青線)。超音波後のクリック反応において、分子量が完全に元に戻らないのは、分子量の大きいポリマー間での反応なので、主鎖に邪魔されてしまい反応がうまく進行しないためだと思われます(しかし、これでもまだ主鎖やトリアゾール以外の連結部位の切断の可能性は完全には否定された訳ではありませんが…)。

他にも、中間体捕捉や熱安定性試験を通して、分子量の大きなポリマーの中心にあるトリアゾールが選択的に力学的エネルギーにより逆環化されていることが明らかとされています(図1、緑線が258℃で19時間熱処理したもの。全く分解していない)。

今回の方法論により、シンプルなコンセプトとシンプルな分子設計でありながら、力学的エネルギーを用いれば安定なトリアゾールですらアルキンとアジドの「保護基」となり得ることが示されました。もちろん、トリアゾールに限った話ではないので、力学的エネルギーを用いた様々な官能基の変換への応用が期待されます。

それにしても、そもそもトリアゾールを開いてみようなんて考える、その大胆な発想こそがこの研究の一番すごいところではないか思います。

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 緑色蛍光タンパク質を真似してRNAを光らせる
  2. 光電変換機能を有するナノシートの合成
  3. 汝ペーハーと読むなかれ
  4. Angewandte Chemieの新RSSフィード
  5. ボリレン
  6. 光有機触媒で開環メタセシス重合
  7. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  8. あなたの体の中の”毒ガス”

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】クロスカップリング反応 基礎と産業応用
  2. 富山化学 新規メカニズムの抗インフルエンザ薬を承認申請
  3. 亜鉛クロロフィル zinc chlorophyll
  4. 地方の光る化学商社~長瀬産業殿~
  5. 知の市場:無料公開講座参加者募集のご案内
  6. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  7. リンダウ会議に行ってきた④
  8. 2017卒大学生就職企業人気ランキングが発表
  9. カーボンナノベルト合成初成功の舞台裏 (3) 完結編
  10. 細胞の中を旅する小分子|第三回(最終回)

関連商品

注目情報

注目情報

最新記事

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

可視光光触媒でツルツルのベンゼン環をアミノ化する

単純なアルキルアミンが利用できる芳香族C–Hアミノ化反応が開発された。基質適用範囲が広く天然物などの…

【21卒】太陽ホールディングスインターンシップ

太陽HDでの研究職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場とし…

アラインをパズルのピースのように繋げる!

第198回のスポットライトリサーチは、広島大学工学研究科 博士課程前期2年の田中英也さんにお願いしま…

Chem-Station Twitter

PAGE TOP