[スポンサーリンク]

化学者のつぶやき

力学的エネルギーで”逆”クリック!

[注意] 紹介した本論文は現在真偽が調査されており、非常に残念ですが捏造の可能性が高いという結果が出ています。画期的な研究であっただけに非常に残念です。詳細はこちら。[追記 2014年12月17日]

[注意】 本論文は2015年2月20日に取り下げされました。捏造であったという結果です。残念です。

Unclicking the Click: Mechanically Facilitated 1,3-Dipolar Cycloreversions
Brantley, J. N.; Wiggins, K. M.; Bielawski, C. W.
Science2011, 333, 1606-1609. DOI: 10.1126/science.1207934

アルキンとアジドのクリック反応により生じる1,2,3-トリアゾールを、力学的エネルギーを加えることで再びアルキンとアジドに変換したという報告をご紹介します(図は全て論文より引用)。

トリアゾールは、芳香族性を有するため非常に安定な構造として知られていますが、いかにしてこのトリアゾールを”逆”クリックしたのでしょうか。

mechanotri2.jpg

図1. 超音波照射前(黒)、照射後(赤)、再クリック後(青)、熱処理後(緑)のGPC測定結果

 

これまでもケムステでは、力学的エネルギーによる分子構造の変換について紹介してきました(力学的活性化力を加えると変色するプラスチック)。今回は、その力学的エネルギーを用いた分子変換の最新の成果で、安定なはずのトリアゾールが超音波によりアルキンとアジドに変換されたという驚きの報告がなされています。
これまでの報告により、力学的エネルギーとして超音波を用いたとき、超音波が分子量の大きいポリマー鎖に伝わることで力学的エネルギーの伝達が起こることが明らかとされてきました。そこで筆者らは今回、中心部位にトリアゾール、両端にはポリマー(PMA)を有する分子を用いて実験を行っています(冒頭図上段)。

分子量の大きなポリマーの方が、それだけ大きな力学的エネルギーがトリアゾール部位に伝わるため、全体で6万以上の分子量を有するポリマーにおいて、超音波の照射に伴う分子量の減少が観測されました(図1、反応前が黒線、超音波後が赤線)。2~5時間程度の超音波の照射で、分子量がほぼ半分になっていることから、反応の進行率の高さが伺えます。

超音波照射で分子量が小さくなったからって、トリアゾールが切断されたとは限らないのでは?
ポリマー主鎖がちぎれたり、トリアゾール近傍のエステルが切れてもおかしくないのでは?

と、考える方もいらっしゃるかもしれません。

そこで筆者らは、超音波でトリアゾールを切断した後に、再びクリック反応を行い、力学的エネルギーにより生じたアルキンとアジドが再び反応に使えることを示しています(図1、青線)。超音波後のクリック反応において、分子量が完全に元に戻らないのは、分子量の大きいポリマー間での反応なので、主鎖に邪魔されてしまい反応がうまく進行しないためだと思われます(しかし、これでもまだ主鎖やトリアゾール以外の連結部位の切断の可能性は完全には否定された訳ではありませんが…)。

他にも、中間体捕捉や熱安定性試験を通して、分子量の大きなポリマーの中心にあるトリアゾールが選択的に力学的エネルギーにより逆環化されていることが明らかとされています(図1、緑線が258℃で19時間熱処理したもの。全く分解していない)。

今回の方法論により、シンプルなコンセプトとシンプルな分子設計でありながら、力学的エネルギーを用いれば安定なトリアゾールですらアルキンとアジドの「保護基」となり得ることが示されました。もちろん、トリアゾールに限った話ではないので、力学的エネルギーを用いた様々な官能基の変換への応用が期待されます。

それにしても、そもそもトリアゾールを開いてみようなんて考える、その大胆な発想こそがこの研究の一番すごいところではないか思います。

The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. シリリウムカルボラン触媒を用いる脱フッ素水素化
  2. 最期の病:悪液質
  3. 触媒がいざなう加速世界へのバックドア
  4. 銀の殺菌効果がない?銀耐性を獲得するバシラス属菌
  5. 第94回日本化学会付設展示会ケムステキャンペーン!Part II…
  6. 既存の農薬で乾燥耐性のある植物を育てる
  7. −(マイナス)と協力して+(プラス)を強くする触媒
  8. 化学者が麻薬を合成する?:Breaking Bad

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 窒素 Nitrogen -アミノ酸、タンパク質、DNAの主要元素
  2. 向山 光昭 Teruaki Mukaiyama
  3. 「ドイツ大学論」 ~近代大学の根本思想とは~
  4. NMRの基礎知識【原理編】
  5. 水 (water, dihydrogen monoxide)
  6. 有機ラジカルポリマー合成に有用なTEMPO型フリーラジカル
  7. フェネストレンの新規合成法
  8. サミュエル・ダニシェフスキー Samuel J. Danishefsky
  9. スズアセタールを用いる選択的変換 Selective Transformation with Tin Acetal
  10. 不斉触媒研究論文引用回数、東大柴崎教授が世界1位

関連商品

注目情報

注目情報

最新記事

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない

映画には、年齢による鑑賞制限が設けられているものがあります。その制限は映画の内容に応じて各国の審査団…

庄野酸化 Shono Oxidation

概要アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミン…

ゲルセジン型アルカロイドの網羅的全合成

ゲルセジン型アルカロイドを網羅的に合成する手法が開発された。巧みな短工程骨格構築法により4種類の同ア…

PAGE TOP