[スポンサーリンク]

archives

金属ナトリウム分散体(SD Super Fine ™)

[スポンサーリンク]

概要

金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒子が油中に分散しておりシリンジで秤量できるのが特長です。金属ナトリウムの反応性を維持しつつ、安全性・操作性に優れています。Ar-Clと作用させて調製したAr-Naは活性が高く、様々な反応に展開でき、特にAr-NaとAr-Clとの直接クロスカップリング反応は廃棄物の少ない有用な反応です。今回はこの試薬についてご紹介します。

金属ナトリウムの形状と秤量法の違い

一般的に金属ナトリウムというとインゴットやブロックのような外観を想像されると思います。この場合の操作は、まず表面の酸化被膜をカッター等でそぎ落とし、表面をヘキサン等で洗浄して投入します。しかし、表面の油分を完全に洗うことはできず過剰量を用いる形となります。その結果として反応後には注意深くクエンチすることになります。一方、SD Super Fine ™では10 μm程度のナトリウムの微粒子が油中に分散(約25 wt%)しているので、流動性があります。シリンジで吸い上げた状態で秤量し、セプタムを通して反応系に加えた後のシリンジを再び秤量すれば、正確な使用量が算出できます。

金属ナトリウム分散体(SD Super Fine ™)のメリット

1.使用上のメリット ⇒ 従来の金属ナトリウムより安全性と操作性に優れています。

  • 金属ナトリウムが水や空気と穏やかに接触するので、空気中で取扱いが可能
  • 液体と同様に配管供給が可能
  • 分散油は有機溶媒には速やかに溶解/拡散するため、均一な系を実現
  • THFやヘキサンをはじめとした低沸点溶媒中でも使用が可能
  • ナトリウム粒子が小さいため局所的な発熱が小さく、反応を制御しやすい

2.保管上のメリット ⇒ 法律の区分が従来の金属ナトリウムとは異なり、管理しやすい。

消防法:金属ナトリウムは消防法で危険物3類に該当し、指定数量は10 kgです。一方、SD Super Fine™は危険物第4類第3石類非水溶性液体に該当し、指定数量は2000 Lです。SD Super Fine™は比重が約0.9、金属ナトリウム濃度が25 wt%であり、指定数量当たり、約450 kgの金属ナトリウムを保有できることになります。また、危険物第3類の金属ナトリウムと危険物第4類は一緒に保管できませんが、SD Super Fine™は危険物第4類の倉庫にも保管できます。

毒物及び劇物取締法:毒物及び劇物取締法において金属ナトリウムは劇物に指定されていますが、製剤化されたSD Super Fine™は劇物に該当しません。

金属ナトリウムとの比較表

 

 

利用例

溶媒の脱水・脱酸素溶媒として: 金属ナトリウムの利用例として最もポピュラーなのが溶媒の脱水・脱酸素です。エーテル系の溶媒にナトリウムとベンゾフェノンを加えて加熱還流する方法であり、脱水・脱酸素条件になるとベンゾフェノンケチルが生じて液が青色に変化します。SD Super Fine™は微粒子ですので、速やかに反応が進行し、酸化被膜に覆われた未反応のナトリウムが残る状況にもなりにくいです。使用量も約1/10となり、クエンチ時のリスクも低減できます。

有機リチウム種の代替品として: 有機リチウム種は脱プロトン化やハロゲンとの置換反応により、有機活性種を発生させる目的でよく使用されますが、リチウムイオンバッテリー(LIB)の開発により需要が高まり、価格が高騰しています。その代替品として有機ナトリウム種が使える可能性があります。Ar-Clに対して2 当量のSD Super Fine™を反応させるとAr-Naが発生します。これに対してAr’-Clを反応させるとクロスカップリングが進行します。ハロゲン化物として比較的安価な塩素化合物を用いるため、コスト的にも有利となって廃棄物の重量も少ないプロセスが実現できます。また、Ar-Naとハロゲン化塩を反応させるトランスメタル化、求電子剤としてB(OR)3を用いた反応を適用すれば、各種クロスカップリング反応の中間体へと誘導することもできます。用途に応じた使い分けができます。

おわりに

試薬の形状が変わると、新しい使い方も生まれてきます。今回の分散液も性能と使いやすさの面で大きなメリットがありますので、ぜひ試していただきたいです。詳しくは関連ページをご確認ください。

参考文献

Asako, S.; Nakajima, H.; Takai, K. Nat. Catal.,2019, 2, 297-303. DOI:10.1038/s41929-019-0250-6

Asako, S.; Kodera, M.; Nakajima, H.; Takai, K. Adv. Synth. Catal.,2019, 361, 3120-3123. DOI:10.1002/adsc.201900215

関連サイト

 

富士フイルム和光純薬

投稿者の記事一覧

「次の科学のチカラとなり、人々の幸せの源を創造する」
みなさまの研究開発を支えるチカラとなるべく、
これからも高い技術とクオリティで、次代のニーズにお応えします。
Twitterでの情報提供を始めました。

関連記事

  1. ルィセンコ騒動のはなし(後編)
  2. 10種類のスパチュラを試してみた
  3. グラファイト、グラフェン、ナノグラフェンの構造と電子・磁気機能【…
  4. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・H…
  5. 印象に残った天然物合成 2
  6. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…
  7. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』…
  8. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「炭素ナノリング」の大量合成と有機デバイス素子の作製に成功!
  2. トンネル効果が支配する有機化学反応
  3. 光熱変換材料を使った自己修復ポリマーの車体コーティングへの活用
  4. ナノ孔に吸い込まれていく分子の様子をスナップショット撮影!
  5. デスソース
  6. 発見が困難なガンを放射性医薬品で可視化することに成功
  7. 谷池俊明 Toshiaki Taniike
  8. 乙卯研究所 研究員募集
  9. 導電性高分子の基礎、技術開発とエネルギーデバイスへの応用【終了】
  10. 大村智 ー2億人を病魔から守った化学者

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP